Personally, I think that four hundred years hence the power question in England may be solved somewhat as follows: The country will be covered with rows of metallic windmills working electric motors which in their turn supply current at a very high voltage to great electric mains. At suitable distances, there will be great power stations where during windy weather the surplus power will be used for the electrolytic decomposition of water into oxygen and hydrogen. These gases will be liquefied, and stored in vats, vacuum jacketed reservoirs, probably sunk in the ground. If these reservoirs are sufficiently large, the loss of liquid due to leakage inwards of heat will not be great; thus the proportion evaporating daily from a reservoir 100 yards square by 60 feet deep would not be 1-1000 of that lost from a tank measuring two feet each way. In times of calm, the gases will be recombined in explosion motors working dynamos which produce electrical energy once more, or more probably in oxidation cells. Liquid hydrogen is weight for weight the most efficient known method of storing energy, as it gives about three times as much heat per pound as petrol. On the other hand it is very light, and bulk for bulk has only one-third of the efficiency of petrol. This will not, however, detract from its use in aeroplanes, where weight is more important than bulk. These huge reservoirs of liquefied gases will enable wind energy to be stored, so that it can be expended for industry, transportation, heating, and lighting, as desired. The initial costs will be very considerable, but the running expenses less than those of our present system. Among its more obvious advantages will be the fact that energy will be as cheap in one part of the country as another, so that industry will be greatly decentralized; and that no smoke or ash will be produced.

It is on some such lines as these, I think, that the problem will be solved. It is essentially a practical problem, and the exhaustion of our coalfields will furnish the necessary stimulus for its solution. Even now perhaps Italy might achieve economic independence by the expenditure of a few million pounds upon research on the lines indicated. I may add in parenthesis that, on thermodynamical grounds which I can hardly summarize shortly, I do not much believe in the commercial possibility of induced radio-activity.

Before I turn to the principal part of my subject I should like to consider very briefly the influence on art and literature of our gradual conquest of space and time. I think that the blame for the decay of certain arts rests primarily on the defective education of the artists. An artist must understand his subject matter. At present not a single competent poet and very few painters and etchers outside the Glasgow School understand industrial life, and I believe that there is only one architect of any real originality who understands the possibilities of ferro-concrete. I do not know his name, but he produced in Soissons before the war a market-place with the dignity and daring of an ancient Egyptian temple. If I knew that he had been entrusted with the rebuilding of Soissons, I could not regret its destruction.

Now if we want poets to interpret physical science as Milton and Shelley did (Shelley and Keats were the last English poets who were at all up-to-date in their chemical knowledge), we must see that our possible poets are instructed, as their masters were, in science and economics. I am absolutely convinced that science is vastly more stimulating to the imagination than are the classics, but the products of this stimulus do not normally see the light because scientific men as a class are devoid of any perception of literary form. When they can express themselves we get a Butler or a Norman Douglas. Not until our poets are once more drawn from the educated classes (I speak as a scientist), will they appeal to the average man by showing him the beauty in his own life as Homer and Virgil appealed to the street urchins who scrawled their verses on the walls of Pompeii.

And if we must educate our poets and artists in science, we must educate our masters, labour and capital, in art. Personally I believe that we may have good hopes of both. The capitalist’s idea of art in industry at present tends to limit itself to painting green and white stripes on the front of his factories in certain cases. This is a primitive type of decoration, but it has, I think, the root of the matter in it. Before long someone may discover that frescoes inside a factory increase the average efficiency of the worker 1.03% and art will become a commercial proposition once more. Even now it is being discovered that artistic advertising often pays. Similarly I do not doubt that labour will come to find that it cannot live by bread (or shall we say bread and beer) alone. But it can hardly be expected to make this discovery until it is assured of its supply of bread and beer.

Applied chemistry has introduced into human life no radical novelty of the importance of the heat-engine or the telegraph. It has vastly increased the production of various types of substance the most important being metals. But there were explosives, dyes, and drugs before chemistry was a science, and its progress along present lines will mainly alter life in a quantitative manner. Perhaps the biggest problems before it in metallurgy are the utilization of low-grade iron ores, and the production of aluminium from clay, which contains up to 24% of that metal. I do not think that even when this is accomplished aluminium will oust iron and steel as they ousted bronze and flint, but it and its alloys will certainly take the second, and possibly the first place as industrial metals. There is just a hope, though I fear little more, that a large-scale production of perfume may form the basis of a re-education of our rather rudimentary sense of smell, but the most interesting possibilities of chemical invention are very clearly in biological chemistry, and for the following reasons.

Desirable substances fall on the whole into two classes. The first are desirable on account of their physical or chemical properties, for example iron, wood or glass, which we use as a part of systems such as fires, houses, or razors, which procure us certain benefits. The second are desirable on account of their physiological properties. Such substances include foods, drinks, tobacco, and drugs. Colours and scents occupy an intermediate position. The value of this second class of substances rests on a quite special relationship to the human organism which depends in the most intimate way on the constitution of the latter, and has not in general been at all fully explained in terms of physics and chemistry. For example fires can be made of coal or peat instead of wood, but no other chemical substance has the same effect as water or alcohol. So unless a chemical substance has new physiological properties its production will merely serve to improve or make possible some appliance whose use lies within the sphere of applied physics. Within historical time two and only two substances of the second class have come into universal use in Europe, namely caffeine and nicotine, which were introduced into this country in the sixteenth and seventeenth centuries. There are others of immense importance, such as chloroform and quinine, but their use is not universal. But coffee, tea, and tobacco, with alcohol, are as much a part of normal life as food and water. There is no reason to suppose that the list of such substances is exhausted. During the war Embden [1] the professor of physiology in Frankfurt University discovered that a dose of about 7 grams of acid sodium phosphate increases a man’s capacity for prolonged muscular work by about 20%, and probably aids in prolonged mental work. It can be taken over very lengthy periods. A group of coal-miners took it for nine months on end with very great effect on their output. It has no after-effects like those of alcohol, and one cannot take a serious overdose as it merely acts as a purgative. (They gave certain Stosstruppen too much!) Thousands of people in Germany take it habitually. It is possible that it may become as normal a beverage as coffee or tea. It costs 1/9 per pound, or ⅓d. per dose.

The vast majority of chemical substances with physiological properties are unsuited for daily use like castor oil, or dangerous like morphine; probably none are without bad effects in certain cases. Those which are susceptible of daily use are of the utmost social importance. Tobacco has slight but definite effects on the character. Coffee-houses in London in the seventeenth and eighteenth centuries and cafes in modern Europe were and are civilizing influences of incalculable value. But these substances are profoundly obnoxious to a certain type of mind. It would perhaps be fantastic to suggest that Sir Walter Raleigh owed his death in part to his sovereign’s objection to tobacco. But if he is not its protomartyr it is at least probable that more men have died for tobacco smoking at the hands of Sikhs, Senussis, and Wahabis, whose religions forbid this practice, than died under the Roman empire for professing Christianity. Should it ever be generally realised that temperance is a mean we may expect that mankind will ultimately have at its disposal a vast array of substances like wine, coffee, and tobacco, whose intelligent use can add to the amenity of life and promote the expression of man’s higher faculties.

But before that day comes chemistry will be applied to the production of a still more important group of physiologically active substances, namely foods. The facts about food are rather curious. Everyone knows that food is ultimately produced by plants, though we may get it at second or third hand if we eat animals or their products. But the average plant turns most of its sugar not into starch which is digestible, but into cellulose which is not, but forms its woody skeleton. The hoofed animals have dealt with this problem in their own way, by turning their bellies into vast hives of bacteria that attack cellulose, and on whose by-products they live. We have got to do the same, but outside our bodies. It may be done on chemical lines. Irvine has obtained a 95% yield of sugar from cellulose, but at a prohibitive cost. Or we may use micro-organisms, but in any case within the next century sugar and starch will be about as cheap as sawdust. Many of our foodstuffs, including the proteins, we shall probably build up from simpler sources such as coal and atmospheric nitrogen. I should be inclined to allow 120 years, but not much more, before a completely satisfactory diet can be produced in this way on a commercial scale.

This will mean that agriculture will become a luxury, and that mankind will be completely urbanized. Personally I do not regret the probable disappearance of the agricultural labourer in favour of the factory worker, who seems to me a higher type of person from most points of view. Human progress in historical time has been the progress of cities dragging a reluctant countryside in their wake. Synthetic food will substitute the flower garden and the factory for the dunghill and the slaughterhouse, and make the city at last self-sufficient.