The biological invention then tends to begin as a perversion and end as a ritual supported by unquestioned beliefs and prejudices. Even now surgical cleanliness is developing its rites and its dogmas, which, it may be remarked, are accepted most religiously by women. With the above facts in your minds I would ask you to excuse what at first sight might appear improbable or indecent in any speculations which appear below, and to dismiss from your minds the belief that biology will consist merely in physical and chemical discoveries as applied to men, animals and plants.

I say advisedly “will consist”, for we are at present almost completely ignorant of biology, a fact which often escapes the notice of biologists, and renders them too presumptuous in their estimates of the present position of their science, too modest in their claims for its future. If for example we take a typical case of applied biology such as the detection and destruction of the cholera bacillus, we find a great deal of science involved, but the only purely biological principle is the very important but not very profound one that some bacteria kill some men. The really scientific parts of the process are the optical and chemical methods involved in the magnification, staining and killing of the bacilli. When on the other hand we come to immunization to typhoid we find certain purely biological principles involved which are neither simple nor at all completely understood.

Actually biological theory consists of some ancient but not very easily stated truths about organisms in general, due largely to Aristotle, Hippocrates and Harvey, a few great principles such as those formulated by Darwin, Mayer, Claude Bernard, and Mendel, and a vast mass of facts about individual organisms and their parts which are still awaiting adequate generalization.

Darwin’s results are beginning to be appreciated, with alarming effects on certain types of religion, those of Weismann and Mendel will be digested in the course of the present century, and are going to affect political and philosophical theories almost equally profoundly. I need hardly say that these latter results deal with the question of reproduction and heredity. We may expect, moreover, as time goes on, that a series of shocks of the type of Darwinism will be given to established opinions on all sorts of subjects. One cannot suggest in detail what these shocks will be, but since the opinions on which they will impinge are deep-seated and irrational, they will come upon us and our descendants with the same air of presumption and indecency with which the view that we are descended from monkeys came to our grandfathers. But owing to man’s fortunate capacity for thinking in watertight (or rather idea-tight) compartments, they will probably not have immediate and disruptive effects upon society any more than Darwinism had.

Far more profound will be the effect of the practical applications of biology. I believe that the progress of medicine has had almost, if not quite, as deep an effect on society in Western Europe as the industrial revolution. Apart from the important social consequences which have flowed from the partial substitution of the doctor for the priest, its net result has been that whereas four hundred years ago most people died in childhood, they now live on an average, (apart from the late war), until forty-five. Bad as our urban conditions often are, there is not a slum in the country which has a third of the infantile death-rate of the royal family in the middle ages. Largely as a result of this religion has come to lay less and less stress on a good death, and more and more on a good life, and its whole outlook has gradually changed in consequence. Death has receded so far into the background of our normal thoughts that when we came into somewhat close contact with it during the war most of us failed completely to take it seriously.

Similarly institutions which were based on short lives have almost wholly collapsed. For example the English land system postulated that the landowner should die aged about forty, and be succeeded by his eldest son, aged about twenty. The son had spent most of his life on the estate, and had few interests outside it. He managed it at least as well as anyone else could have done. Nowadays the father dodders on till about eighty, and is generally incompetent for ten years before his death. His son succeeds him at the age of fifty or so, by which time he may be a fairly competent colonel or stockbroker, but cannot hope to learn the art of managing an estate. In consequence he either hands it over to an agent who is deprived of initiative and often corrupt, or runs it unscientifically, gets a low return, and ascribes to Bolshevism what he should really lay at the door of vaccination.

But to return, if I may use the expression, to the future, I am going to suggest a few obvious developments which seem probable in the present state of biological science, without assuming any great new generalizations of the type of Darwinism. I have the very best precedents for introducing a myth at this point, so perhaps I may be excused if I reproduce some extracts from an essay on the influence of biology on history during the 20th century which will (it is hoped) be read by a rather stupid undergraduate member of this university to his supervisor during his first term 150 years hence.

“As early as the first decade of the twentieth century we find a conscious attempt at the application of biology to politics in the so-called eugenic movement”. A number of earnest persons, having discovered the existence of biology, attempted to apply it in its then very crude condition to the production of a race of super-men, and in certain countries managed to carry a good deal of legislation. They appear to have managed to prevent the transmission of a good deal of syphilis, insanity, and the like, and they certainly succeeded in producing the most violent opposition and hatred amongst the classes whom they somewhat gratuitously regarded as undesirable parents. (There was even a rebellion in Nebraska). However, they undoubtedly prepared public opinion for what was to come, and so far served a useful purpose. Far more important was the progress in medicine which practically abolished infectious diseases in those countries which were prepared to tolerate the requisite amount of state interference in private life, and finally, after the league’s ordinance of 1958, all over the world; though owing to Hindu opposition, parts of India were still quite unhealthy up to 1980 or so.

But from a wider point of view the most important biological work in the first third of the century was in experimental zoology and botany. When we consider that in 1912 Morgan had located several Mendelian factors in the nucleus of Drosophila, and modified its sex-ratio, while Marmorek had taught a harmless bacillus to kill guinea-pigs, and finally in 1913 Brachet had grown rabbit embryos in serum for some days, it is remarkable how little the scientific workers of that time, and a fortiori the general public, seem to have foreseen the practical bearing of such results.

As a matter of fact it was not until 1940 that Selkovski invented the purple alga Porphyrococcus fixator which was to have so great an effect on the world’s history. In the 50 years before this date the world’s average wheat yield per hectare had been approximately doubled, partly by the application of various chemical manures, but most of all by the results of systematic crossing work with different races; there was however little prospect of further advance on any of these lines. Porphyrococcus is an enormously efficient nitrogen-fixer and will grow in almost any climate where there are water and traces of potash and phosphates in the soil, obtaining its nitrogen from the air. It has about the effect in four days that a crop of vetches would have had in a year. It could not, of course have been produced in the course of nature, as its immediate ancestors would only grow in artificial media and could not have survived outside a laboratory. Wherever nitrogen was the principal limiting factor to plant growth it doubled the yield of wheat, and quadrupled the value of grass land for grazing purposes. The enormous fall in food prices and the ruin of purely agricultural states was of course one of the chief causes of the disastrous events of 1943 and 1944. The food glut was also greatly accentuated when in 1942 the Q strain of Porphyrococcus escaped into the sea and multiplied with enormous rapidity. Indeed for two months the surface of the tropical Atlantic set to a jelly, with disastrous results to the weather of Europe. When certain of the plankton organisms developed ferments capable of digesting it the increase of the fish population of the seas was so great as to make fish the universal good that it is now, and to render even England self-supporting in respect of food. So great was the prosperity in England that in that year the coal-miner’s union entered its first horse for the Derby (a horse-race which still took place annually at that time).