Fig. 10. Monitor at Work, Great Southern Gold-field.

The water is conveyed in flumes [(Fig. 9)], or pipes to a point near where it is required, thence in wrought iron pipes gradually reduced in size and ending in a great nozzle somewhat like that of a fireman’s hose. The “Monitor,” as it is sometimes called, is generally fixed on a movable stand, so arranged that the strong jet of water can be directed to any point by a simple adjustment [(Fig. 10)]. A “face” is formed in the drift, and the water played against the lower portion of the ledge, which is quickly undermined, falls, and is soon washed away in the stream of water, which is conducted through sluices with riffles, and sometimes over considerable lengths of amalgamated copper plates. This class of mining has been most extensively carried out in California and New Zealand, and some districts of Victoria, but the truly enormous drifts of the Shoalhaven district in New South Wales must in the near future add largely to the world’s gold supply. These drifts are auriferous from grass roots to bed rock, extend for nearly fifty miles, and are in places as much as 300 feet deep. Want of capital and want of knowledge has hitherto prevented them being profitably worked on a large scale.

The extraction of reef gold from its matrix is a much more complicated process, and the problem how most effectively to obtain that great desideratum—a complete separating and saving operation—is one which taxes the skill and evokes the ingenuity of scientific men all over the world. The difficulty is that as scarcely any two gangues, or matrixes, are exactly alike, the treatment which is found most effective on one mine will often not answer in another. Much also depends on the proportion of gold to the ton of rock under treatment, as the most scientific and perfect processes of lixiviation hitherto adopted will not pay, even when all other conditions are favourable, if the amount of gold is much under half an ounce to the ton and even then will leave but a very small profit. If, however, the gold is “free,” and the lode large, a very few pennyweights (or “dollars,” as the Americans say) to the ton will pay handsomely. The mode of extraction longest in vogue, and after all the cheapest and most effective, for free milling ores where the gold is not too fine, is amalgamation with mercury, which metal has a strong affinity for gold, silver, and copper.

As to crushing appliances, I shall not say much. “Their name is legion for they are many,” and the same may be said of concentrators. It may be old-fashioned, but I admit my predilection is still in favour of the stamper-battery, for the reason that though it may be slower in proportion to the power employed, it is simple and not liable to get out of order, a great advantage when one has so often to depend on men who bring to their work a supply principally of main strength and stupidity. For the same reason I prefer the old draw and lift, and plunger pumps to newer but more complicated water-lifters.

On both these points, however, I am constrained to admit that my opinion has recently been somewhat shaken.

I have lately seen two appliances which appear to mark a new era in the scientific progress of mining. One is the “Griffin Mill,” the other the “Lemichel Siphon Èlévateur.”

The first is in some respects on the principle of the Huntingdon Mill. The latter, if the inventor is to be believed, and the results seem to show he may, will be a wonderful factor in developing not only mining properties where a preponderance of water is the trouble, but also in providing an automatic, and therefore extremely cheap, mode of water-raising and supply, which in simplicity is thus far unexampled. Atmospheric pressure alone is relied on. The well-known process of the syphon is the basis, but with this essential difference, that a large proportion of the water drawn up to the apex of the syphon is super-elevated to heights regulated by the fall obtained in the outlet leg. This elevation can be repeated almost indefinitely by returning the waste water to the reservoirs.

The Lemichel Syphon [(Fig. 11)] is a wonderful, yet most simple application of natural force. The inlet leg of the syphon is larger in diameter than the outlet leg, and is provided at the bottom with a valve or “clack.” The outlet leg has a tap at its base. At the apex are two chambers, with an intermediary valve, regulated by a counterpoise weighted lever. The first chamber has also a vertical valve and pipe.

When the tap of the outlet leg is turned, the water flows as in an ordinary syphon, but owing to the rapid automatic opening and shutting of the valve in the first chamber about 45 per cent. of the water is diverted, and may be raised to a height of many feet above the top of the syphon.

It need not be impressed on practical men that if this invention will perform anything like what is claimed for it, its value can hardly be calculated. After a careful inspection of the appliance in operation, I believe it will do all that is stated.