Recent measurements show that the ice in the present Teton Glacier ([fig. 6]) moves nearly 30 feet per year. The ancient glaciers, which were much wider and deeper, may have moved as much as several hundred feet a year, like some of the large glaciers in Alaska.

As the glacier moves down a valley, it scours the valley bottom and walls. The efficiency of ice in this process is greatly increased by the presence of rock fragments which act as abrasives. The valley bottom is plowed, quarried, and swept clean of soil and loose rocks. Fragments of many sizes and shapes are dragged along the bottom of the moving ice and the hard ones scratch long parallel grooves in the underlying tough bedrock ([fig. 7]). Such grooves (glacial striae) record the direction of ice movement.

The effectiveness of glaciers in cutting a U-shaped valley is particularly striking in Glacier Gulch and Cascade Canyon (figs. [2] and [8]).

The rock-walled amphitheater at the head of a glaciated valley is called a cirque (a good example is at the upper edge of the Teton Glacier, [fig. 6]). The steep cirque walls develop by frost action and by quarrying and abrasive action of the glacier ice where it is near its maximum thickness. Commonly the glacier scoops out a shallow basin in the floor of the cirque. Amphitheater Lake, Lake Solitude, Holly Lake, and many of the other small lakes high in the Teton Range are located in such basins.

The sharp peaks and the jagged knife-edge ridges so characteristic of the Tetons are divides left between cirques and valleys carved by the ancient glaciers.

Effects on Jackson Hole

Rock debris is carried toward the end of the glacier or along the margins where it is released as the ice melts. The semicircular ridge of rock fragments that marks the downhill margin of the glacier is called a terminal moraine; that along the sides is a lateral moraine (figs. [9] and [10]). These are formed by the slow accumulation of material in the same manner as that at the end of a conveyor belt. They are not built by material pushed up ahead of the ice as if by a bulldozer. Large boulders carried by ice are called erratics; many of these are scattered on the floor of Jackson Hole and on the flanks of the surrounding mountains ([fig. 11]).

Figure 7. Rock surface polished and grooved by ice on the floor of Glacier Gulch.

Great volumes of water pour from melting ice near the lower end of a glacier. These streams, heavily laden with rock flour produced by the grinding action of the glacier and with debris liberated from the melting ice, cut channels through the terminal moraine and spread a broad apron of gravel, sand, and silt down-valley from the glacier terminus (end). Material deposited by streams issuing from a glacier is called outwash; the sheet of outwash in front of the glacier is called an outwash plain. If the terminus is retreating, masses of old stagnant ice commonly are buried beneath the outwash; when these melt, the space they once occupied becomes a deep circular or irregular depression called a kettle ([fig. 12]); many of these now contain small lakes or swamps.