Figure 53. Air oblique view south, showing the north end of the Teton Range disappearing beneath Pleistocene lava flows. Light-colored bare area at lower left is vertical Paleozoic limestone surrounded on three sides by nearly horizontal rhyolite lava flows. Bare slope at lower right is west-dipping Pinyon Conglomerate, also overlapped by lava. Grand Teton is on right skyline and Mt. Moran is rounded summit on middle skyline.
As mentioned earlier, it is probable that the vast outpouring of volcanic rocks during late Tertiary time in the Teton region and to the north and northeast is directly related to the subsidence of Jackson Hole and the rise of the Tetons.
The spectacular banded cliffs of the Wiggins Formation on both sides of Togwotee Pass ([fig. 52]) and farther north in the Absaroka Range are remnants of Oligocene volcanic conglomerate and tuff that once spread as a blanket several thousand feet thick across eastern Jackson Hole and partially or completely buried the nearby older folded mountain ranges.
Figure 54. Obsidian, a volcanic glass less than 10 million years old, especially prized by Indians who used it for spear and arrow points and for tools.
About 25 million years ago, with the start of the Miocene Epoch, volcanic vents opened up within, and along the borders of, Grand Teton National Park. Major centers of eruption were at the north end of the Teton Range, east of Jackson Lake, and south of Spread Creek. They emitted a prodigious amount of volcanic ash and fragments of congealed lava. For example, adjacent to one vent a mile in diameter, about 4 miles north-northeast of Jackson Lake Lodge, is a continuous section, 7,000 feet thick, of waterlaid strata derived in large part from this volcanic source. These sedimentary rocks comprise the Colter Formation which is darker colored and contains more iron and magnesium than the Wiggins Formation. The site of deposition at this locality was a north-trending trough that represented an early stage in the downwarping of Jackson Hole.
Pliocene volcanoes erupted in southern and central Yellowstone Park. The volcanoes emitted viscous, frothy, pinkish-gray and brown lava called rhyolite. This is an extrusive igneous rock that has the same composition as granite, but is much finer grained. In several places, lava apparently flowed into the north end of Teewinot Lake, chilled suddenly, and solidified into a black volcanic glass called obsidian. Because it chips easily into thin flakes having a smooth surface, obsidian was prized by the Indians, who used it for spear and arrow points ([fig. 54]). Some of this obsidian has a potassium-argon date of 9 million years.
Figure 55. East face of Signal Mountain showing Bivouac Formation (upper Pliocene or Pleistocene). Tilted ledge is rhyolitic welded tuff 2.5 million years old, and slopes above and below it are conglomerate. National Park Service photo by W. E. Dilley.
After Teewinot Lake was filled with sediment, the floor of Jackson Hole became a flat boulder-covered surface. Nearby vents erupted heavy fiery clouds of gaseous molten rock that rolled across this plain and then congealed into hard layers with the general appearance of lava flows. Under a microscope, however, the rock is seen to be made up of compressed fragments of glass that matted down and solidified when the clouds stopped moving. This kind of rock is called a welded tuff. One of these forms the conspicuous ledge in the Bivouac Formation on the north and east sides of Signal Mountain ([fig. 55]), and is especially important because it has a potassium-argon date of 2.5 million years. More of this welded tuff flowed southward from Yellowstone National Park, engulfed the north end of the Teton Range ([fig. 53]), and continued southward along the west side of the mountains for 35 miles and along the east side for 25 miles.