The third and last glaciation, named the Pinedale, was even less extensive than the others. Nevertheless it was of great importance for it added the final touches to the present landscape. The jagged intricately ice-carved peaks ([fig. 4]) and the glittering lakes and broad gravelly plains are vivid reminders of this recent chapter in geologic history.

Pinedale glaciers advanced down Cascade, Garnet, Avalanche, and Death Canyons and spilled out onto the floor of Jackson Hole, where they built the outermost loops of the conspicuous terminal moraines that now encircle Jenny, Bradley, Taggart, and Phelps Lakes ([fig. 13]). Ice streams from Glacier Gulch and Open Canyon also left prominent moraines on the valley floor, but these do not contain lakes. Ice from Leigh Canyon and all of the eastward-draining valleys to the north combined to form a large glacier in roughly the present position of Jackson Lake. This ice entirely surrounded Signal Mountain, leaving only the upper few hundred feet projecting as an island or nunatak.

Figure 61. The Pinedale Glaciers in the central part of Jackson Hole as they might have appeared at the time the Jackson Lake moraine was built. Solid color areas are lakes; dark irregular pattern shows areas of moraine deposited during the maximum advance of the Pinedale Glaciers. Pattern of open circles shows older Pinedale outwash plains; pattern of fine dots shows outwash plains built at the time the glaciers were in the positions shown in the drawing. Coarser dots near the margins of the glaciers represent concentrations of rock debris in the ice.

The southernmost major advance of Pinedale ice from Jackson Lake is marked by a series of densely timbered moraines that cross the Snake River Valley. This series is collectively named the Burned Ridge moraine ([fig. 61]). Extending southward for 10 miles from this moraine is a remarkably flat surfaced gravelly outwash deposit. It was spread by streams that poured from the glacier at the time the moraine was being built ([fig. 59]). East of the Snake River, the main highway from a point just north of Blacktail Butte to the Snake River overlook is built on this flat untimbered surface. We assume that the outwash is younger than 15,000 years because it apparently overlies loess of that age.

The glacier withdrew rapidly northward from the Burned Ridge moraine, leaving behind many large irregular masses of stagnant, debris-covered ice. The sites of these became kettles, locally known as “The Potholes” ([fig. 12]). The main glacier retreated to a position marked by the loop of moraines just south of Jackson Lake ([fig. 60]). [Figure 61] is a sketch map showing how the glaciers in this part of Jackson Hole might have appeared at the time the Jackson Lake moraine was built.

Abundant snail shells have been found in lake sediments in the bottoms of the kettles north of the Burned Ridge moraine ([fig. 60]) as well as on low ridges between them. Carbon-14 age determinations indicate that the snails lived about 9,000 years ago, either in a lake already present before the Pinedale ice advanced and formed the Burned Ridge moraine or in ponds that filled kettles left as the ice melted behind this moraine.

In either case, the shells indicate that the Pinedale glaciers probably existed on the floor of Jackson Hole as recently as 9,000 years ago, at a time when Indians were already living in the area. We can easily imagine the fascination with which these primitive peoples may have watched as year after year the glaciers wasted away, slowly retreating back into the canyons, then withdrawing into the sheltered recesses of the high mountains, eventually to dwindle and disappear.

Many bits of evidence, both from North America and Europe, indicate that there was a period called the climatic optimum about 6,000 years ago when the climate was significantly warmer and drier than at present. We suspect, though there is as yet no direct proof, that the Pinedale glaciers wasted away entirely during this interval.

The modern pattern of vegetation in Jackson Hole is strongly influenced by the distribution of Pinedale glacial moraines and outwash deposits. Almost without exception the moraines are heavily forested, whereas the nearby outwash deposits are covered only by a sparse growth of sagebrush. This is probably because the moraines contain large amounts of clay and silt produced by the grinding action of the glaciers. Material of this type retains water much better and, because of the greater variety of chemical elements, is more fertile than the porous quartzite gravel and sand on the outwash plains.