Grades and Uses of Fluorspar.—There are three principal grades of fluorspar—metallurgical, acid, and ceramic. The metallurgical spar is used as a flux in making steel and in metal foundries. Acid spar is used to make hydrofluoric acid, which plays a part in the preparation of uranium isotopes and in the production of a synthetic mineral essential in refining aluminum. The acid is also used in the production of high-octane gasoline and is the basis for a variety of important chemical compounds, among them refrigerants and insecticides. Ceramic grade fluorspar is used in making enamels, glazes, and certain kinds of glass.
Mining and Milling.—Fluorspar and its associated ores are mined in different ways in the Rosiclare and Cave in Rock districts because the types of deposits differ. However, in both areas most of the larger mines are entered by vertical shafts. In the mines, explosives are placed in holes drilled by machines and are then detonated to shoot down the ore ([fig. 12]). Mine cars, trucks, or conveyor belts carry the ore to the bottom of the mine shaft where hoists raise it to the mills at the surface. In the mills a variety of ore-classifying machines separate the galena, sphalerite, and fluorspar from the waste mineral materials (chiefly limestone and calcite) with which they occur. Some fluorspar after the separation process is almost flour-fine. To increase its use, much of this spar is mixed with a binder and made into pellets or briquets one-half to one inch in size.
Figure 12—Machine loading fluorspar ore in mine near Cave in Rock.
Geological and Chemical Studies.—Because much of the fluorspar produced in southern Illinois has come from veins along faults, geologists have mapped the faults of the area by investigating the distribution and nature of the various bedrock outcrops. The work was complicated by the mantle of earth and vegetation that covers the bedrock at many places. However, a geologic map was made that shows where the various rock formations—sandstone, limestone, and shale—lie beneath the surface and where the numerous faults crisscross the district.
The first geologic map of the fluorspar district was made in 1920 by the Illinois and U. S. Geological Surveys. New maps on a much larger scale have been made recently by the Illinois Survey to meet the needs of the modern fluorspar industry.
The Illinois Survey also has studied the ores and ore deposits of southern Illinois to determine how they were formed. The records of many borings and pits sunk to find ore have been collected and filed at the Survey to guide future prospecting.
Survey chemists are finding new uses for Illinois fluorspar. Their research has produced new organic fluorine compounds that are being tested for use in agriculture, medicine, and industry. They also have worked out easier and cheaper methods of making certain fluorine compounds. Survey chemical engineers have helped to obtain needed information about the physical properties of the pellets made from fluorspar powder.
Origin of Illinois Ore Deposits
The ore deposits of northwestern and southern Illinois were formed so many millions of years ago that it is possible to propose only theories of their origin. Most geologists think that the minerals, dissolved in warm or hot water, came from deep in the earth. Perhaps the mineral-bearing water came from, or was associated with, rocks that were or had been molten (igneous rocks), but it may have had some other source. Why the ores occur where we now find them is not fully known. The cooling of the solutions and the lessening of pressure as the solutions rose toward the surface may have had a part in ore deposition. Faults and the nature of the rocks encountered by the depositing solutions also appear to have had an influence.