Time and the Coordinate System

This introduces the concept of time into intimate relationship with the spatial coordinate system. And at once we feel the lack of a concrete, visualized fourth dimension.]* [If we want to fix objects in the floor alone, the edge of the room running toward the ceiling would become unnecessary and could be dropped from our coordinate system. That is, we need only two coordinates to fix the position of a point in a plane. Suppose instead of discarding the third coordinate, we use it to represent units of time. It then enables us to record the time it took a moving point in the floor to pass from position to position. Certain points in the room would be vertically above the corresponding points occupied by the moving point in its path across the floor; and the vertical height above the floor of such points corresponds to a value of the time-coordinate which indicates the time it took the point to move from position to position.][152] [Just as the path of the point across the floor is a continuous curve (for the mathematician, it should be understood, this term “curve” includes the straight line, as a special case in which the curvature happens to be zero); so the series of points above these in the room forms a continuous curve which records for us, not merely the path of the point across the floor, but in addition the time of its arrival at each of its successive positions. In the algebraic work connected with such a problem, the third coordinate behaves exactly the same, regardless of whether we consider it to represent time or a third spatial dimension; we cannot even tell from the algebra what it does represent.

When we come to the more general case of a point moving freely through space, we have but three coordinates at our disposal; there is not a fourth one by aid of which we can actually diagram its time-space record. Nevertheless, we can write down the numerical and algebraic relations between its three space-coordinates and the time which it takes to pass from one position to another; and by this means we can make all necessary calculations. Its motion is completely defined with regard both to space and to time. We are very apt to call attention to the fact that if we did have at our disposal a fourth, space-coordinate, we could use it to represent the time graphically, as before, and actually construct a geometric picture of the path of our moving point with regard to space and time. And on this account we are very apt to speak as though the time measurements constituted a fourth coordinate, regardless of any question of our ability to construct a picture of this coordinate. The arrival of a point in a given position constitutes an event; and this event is completely defined by means of four coordinates—three in space, which we can picture on our coordinate axes, and one in time which we cannot.

The set of coordinate axes in space, together with the zero point from which we measure time, constitute what we call a frame of reference. If we are not going to pay any attention to time, we can think of the space coordinate system alone as constituting our reference frame. This expression appears freely throughout the subsequent text, and always with one or the other of these interpretations.

We see, then, how we can keep track of a moving point by keeping track of the successive positions which it occupies in our reference frame.]* [Now we have implied that these coordinate axes are fixed in space; but there is nothing to prevent us from supposing that they move.][272] [If they do, they carry with them all their points; and any motion of these points which we may speak about will be merely motion with reference to the coordinate system. If we find something outside our coordinate system that is not moving, the motion of points in our system with regard to those outside it will be a combination of their motion with regard to our coordinate axes and that of these axes with regard to the external points. This will be a great nuisance; and it represents a state of affairs which we shall try to avoid. We shall avoid it, if at all, by selecting a coordinate system with reference to which we, ourselves, are not moving; one which partakes of any motion which we may have. Or perhaps we shall sometimes wish to reverse the process, in studying the behavior of some group of bodies, and seek a set of axes which is at rest with respect to these bodies; one which partakes of any motion they may have.

The Choice of a Coordinate Frame

All this emphasizes the fact that our coordinate axes are not picked out for us in advance by nature, and set down in some one particular spot. We select them for ourselves, and we select them in the most convenient way. But different observers, or perhaps the same observer studying different problems, will find it advantageous to utilize different coordinate systems.]* [The astronomer has found it possible, and highly convenient, to select a coordinate frame such that the great majority of the stars have, on the whole, no motion with respect to it.][283] [Such a system would be most unsuited for investigations confined to the earth; for these we naturally select a framework attached to the earth, with its origin O at the earth’s center if our investigation covers the entire globe and at some more convenient point if it does not, and in either event accompanying the earth in its rotation and revolution. But such a framework, as well as the one attached to the fixed stars, would be highly inconvenient for an investigator of the motions of the planets; he would doubtless attach his reference frame to the sun.][101]

[In this connection a vital question suggests itself. Is the expression of natural law independent of or dependent upon the choice of a system of coordinates? And to what extent shall we be able to reconcile the results of one observer using one reference frame, and a second observer using a different one? The answer to the second question is obvious.]* [True, if any series of events is described using two different sets of axes, the descriptions will be different, depending upon the time system adopted and the relative motion of the axes. But if the connection between the reference systems is known, it is possible by mathematical processes to deduce the quantities observed in one system if those observed in the other are known.][35] [This process of translating the results of one observer into those of another is known as a transformation; and the mathematical statement of the rule governing the transformation is called the equation or the equations (there are usually several of them) of the transformation.]* [Transformations of this character constitute a well-developed branch of mathematics.][35]

[When we inquire about the invariance of natural law it is necessary to be rather sure of just what we mean by this expression. The statement that a given body is moving with a velocity of 75 miles per hour is of course not a natural law; it is a mere numerical observation. But aside from such numerical results, we have a large number of mathematical relations which give us a more or less general statement of the relations that exist between velocities, accelerations, masses, forces, times, lengths, temperatures, pressures, etc., etc. There are some of these which we would be prepared to state at once as universally valid—distance travelled equals velocity multiplied by time, for instance. We do not believe that any conceivable change of reference systems could bring about a condition in which the product of velocity and time, as measured from a certain framework, would fail to equal distance as measured from this same framework. There are other relations more or less of the same sort which we probably believe to be in the same invariant category; there are others, perhaps, of which we might be doubtful; and presumably there are still others which we should suspect of restricted validity, holding in certain reference systems only and not in others.