A Journey Upstream and Back
The number of letters the Scientific American has received questioning the Michelson-Morley experiment indicates that many people are not acquainted with the fundamental principle on which it is based. So let us look at a simple analogous case. Suppose a swimmer or a rower make a return trip upstream and down, contending with the current as he goes up and getting its benefit when he comes down. Obviously, says snap judgment, since the two legs of the journey are equal, he derives exactly as much benefit from the current when he goes with it as he suffers handicap from it when he goes against it; so the round trip must take exactly the same time as a journey of the same length in still water, the argument applying equally in the case where the “swimmer” is a wave of light in the ether stream.
But let us look now at a numerical case. A man can row in still water at four miles per hour. He rows twelve miles upstream and back, in a current of two miles per hour. At a net speed of two miles per hour he arrives at his turning point in six hours. At a net speed of six miles per hour he makes the down-stream leg in two hours. The elapsed time for the journey is eight hours; in still water he would row the twenty-four miles in six hours.
If we were to attempt an explanation of this result in words we should say that by virtue of the very fact that it does delay him, the adverse current prolongs the time during which it operates; while by virtue of the very fact that it accelerates his progress, the favoring current shortens its venue. The careless observer realizes that distances are equal between the two legs of the journey, and unconsciously assumes that times are equal.
If the journey be made directly with and directly against the stream of water or ether or what not, retardation is effected to its fullest extent. If the course be a diagonal one, retardation is felt to an extent measurable as a component, and depending for its exact value upon the exact angle of the path. Felt, however, it must always be.
Here is where we begin to get a grip on the problem of the earth and the ether. In any problem involving the return-trip principle, there will enter two velocities—that of the swimmer and that of the medium; and the time of retardation. If we know any two of these items we can calculate the third. When the swimmer is a ray of light and the velocity of the medium is that of the ether as it flows past the earth, we know the first of these two; we hope to observe the retardation so that we may calculate the second velocity. The apparatus for the experiment is ingenious and demands description.
The Michelson-Morley Experiment
The machine is of structural steel, weighing 1,900 pounds. It has two arms which form a Greek cross. Each arm is 14 feet in length. The whole apparatus is floated in a trough containing 800 pounds of mercury.