And What Is It All About?
Is this geometry ever realized? Strictly it is not the geometer’s business to ask or answer this question. But research develops two viewpoints. There is always the man who indulges in the pursuit of facts for their sake alone, and equally the man who wants to see his new facts lead to something else. One great mathematician is quoted as enunciating a new theory of surpassing mathematical beauty with the climacteric remark “And, thank God, no one will ever be able to find any use for it.” An equally distinguished contemporary, on being interrogated concerning possible applications for one of his most abstruse theorems, replied that he knew no present use for it; but that long experience had made him confident that the mathematician would never develop any tool, however remote from immediate utility, for which the delvers in other fields would not presently find some use.
If we wish, however, we may inquire with perfect propriety, from the side lines, whether a given geometry is ever realized. We may learn that so far as has yet been discovered there are no elements for which all its postulates are verified, and that there is therefore no realization known. On the other hand, we may more likely find that many different sets of elements are such that the postulates can be interpreted as applying to them, and that we therefore have numerous realizations of the geometry. As a human being the geometer may be interested in all this, but as a geometer it really makes little difference to him.
When we look at space about us, we see it, for some reason grounded in the psychological history of the human race, as made up in the small of points, which go to make up lines, which in turn constitute planes. Or we can start at the other end and break space down first into planes, then into lines, finally into points. Our perceptions and conceptions of these points, lines and planes are very definite indeed; it seems indeed, as the Greeks thought, that certain things about them are self-evident. If we wish to take these self-evident properties of point, line and plane, and combine with them enough additional hair-splitting specifications to assure the modern geometer that we have really a categorical system of assumptions, we shall have the basis of a perfectly good system of geometry. This will be what we unavoidably think of as the absolute truth with regard to the space about us; but you mustn’t say so in the presence of the geometer. It will also be what we call the Euclidean geometry. It has been satisfactory in the last degree, because not only space, but pretty much every other system of two or three elements bearing any relations to one another can be made, by employing as a means of interpretation the Cartesian scheme of plotting, to fit into the framework of Euclidean geometry. But it is not the only thing in the world of conceptual possibilities, and it begins to appear that it may not even be the only thing in the world of cold hard fact that surrounds us. To see just how this is so we must return to Euclid, and survey the historical development of geometry from his day to the present time.
Euclid’s Geometry
Point, line and plane Euclid attempts to define. Modern objection to these efforts was made clear above. Against Euclid’s specific performance we urge the further specific fault that his “definitions” are really assumptions bestowing certain properties upon points, lines and planes. These assumptions Euclid supplements in his axioms; and in the process of proving propositions he unconsciously supplements them still further. This is to be expected from one whose justification for laying down an axiom was the alleged obvious character of the statement made. If some things are too obvious to require demonstration, others may be admitted as too obvious to demand explicit statement at all.
Thus, if Euclid has two points A and B in a plane, on opposite sides of a line M, he will draw the line AB and without further formality speak of the point C in which it intersects M. That it does so intercept M, rather than in some way dodges it, is really an assumption as to the nature of lines and planes. Or again, Euclid will speak of a point D on the line AB, between or outside the points A and B, without making the formal assumption necessary to insure that the line is “full” of points so that such a point as D must exist. That such assumptions as these are necessary follows from our previous remarks. If we think of our geometry as dealing with “chings,” “changs,” and “chungs,” or with elements I, II and III, it is no longer in the least degree obvious that the simplest property in the world applies to these elements. If we wish any property to prevail we must state it explicitly.