The Mechanical Principle of Relativity

It has been ascertained that all such frames are equally suitable for the mathematical statement of general mechanical laws, provided that their motion is rectilinear and uniform and without rotation. This fact is comprehended in the general statement that all unaccelerated frames of reference are equivalent for the statement of the general laws of mechanics. This is the mechanical principle of relativity.

It is well recognized however that the laws of dynamics as hitherto stated involve the assumptions that the lengths of rigid bodies are unaffected by the motion of the frame of reference, and that measured times are likewise unaffected; that is to say that any length measured on his own system by either of two relatively moving observers appears the same to both observers, or that lengths of objects and rates of clocks do not alter whatever the motion relative to an observer. These assumptions seem so obvious that it is scarcely perceived that they are assumptions at all. Yet this is the case, and as a matter of fact they are both untrue.

The Special Principle of Relativity

Although all unaccelerated frames of reference are equivalent for the purposes of mechanical laws, this is not the case for physical laws generally as long as the above suppositions are adhered to. Electromagnetic laws do alter their form according to the motion of the frame of reference; that is to say, if these suppositions are true, electromagnetic agencies act in different ways according to the motion of the system in which they occur. There is nothing a priori impossible in this, but it does not agree with experiment. The motion of each locality on the earth is continually changing from hour to hour but no corresponding changes occur in electromagnetic actions. It has however been ascertained that on discarding these suppositions the difficulty disappears, and electromagnetic laws retain their form under all circumstances of unaccelerated motion. According to the theory of relativity, the correct view which replaces these suppositions is deducible from the following postulates:

Both these postulates are well established by experiment. The first may be illustrated by the familiar difficulty of determining whether a slowly moving train one happens to be sitting in, or an adjacent one, is in motion. The passenger has either to wait for bumps (that is, accelerations) or else he has to look out at some adjacent object which he knows to be fixed, such as a building (that is, he has to perform an experiment on something outside his system), before he can decide.

The second postulate is an obvious consequence of the wave theory of light. Just as waves in water, once started by a ship, travel through the water with a velocity independent of the ship, so waves in space travel onward with a speed bearing no relation to that of the body which originated them. The statement however is based on experiment, and can be proved independently of any theory of light.