When we look into a world alleged to be that of Euclid and find motion, we may retain the Euclidean concept of what constitutes the world and invent a machinery to account for the motion; or we may abandon the Euclidean world, as inadequate, in favor of a more general one. We have adopted the second alternative.

Newton’s laws tells us that a body free to move will do so, proceeding in a straight line at uniform velocity until interfered with. We do not ask, nor does the theory tell us, whence comes the initial motion. There is no machinery to produce it; it is an inherent property of Newton’s world—assured by the superposition of the time continuum upon Euclid’s world to make Newton’s, accepted without question along with that world itself.

But Newton saw that his world of uniform motion, like Euclid’s, was never realized. In the neighborhood of one particle a second is interfered with, forced to give up its uniform motion and acquire a constant acceleration. This Newton explained by employing the first of the alternatives mentioned above. He tells us that in connection with all matter there exists a force which acts on other matter in a certain way. He does not display the actual machinery through which this “force” works, because he could not discover any machinery; he had to stop with his brilliant generalization of the observed facts. And all his successors have failed to detect the slightest trace of a machinery of gravitation.

Einstein asks whether this is not because the machinery is absent—because gravitation, like position in Euclid’s world and motion in Newton’s, is a fundamental property of the world in which it occurs. His point of attack here lay in precise formulation of certain familiar facts that had never been adequately appreciated. These facts indicate that even accelerated motion is relative, in spite of its apparently real and absolute effects.

Gravitation and Acceleration

An observer in a closed compartment, moving with constant acceleration through empty space, finds that the “bottom” of his cage catches up with objects that he releases; that it presses on his feet to give him the sensation of weight, etc. It displays all the effects that he would expect if it were at rest in a gravitational field. On the other hand, if it were falling freely under gravitational influence, its occupant would sense no weight, objects released would not leave his hand, the reaction from his every motion would change his every position in his cage, and he could equally well assume himself at rest in a region of space free from gravitational action. Accelerated motion may always be interpreted, by the observer on the system, as ordinary force effects on his moving system, or as gravitational effects on his system at rest.

An alternative statement of the Special Theory is that the observed phenomena of uniform motion may equally be accounted for by supposing the object in motion and the observer with his reference frame at rest, or vice versa. We may similarly state the General Theory: The observed phenomena of uniformly accelerated motion may in every case be explained on a basis of stationary observer and accelerated objective, or of stationary objective with the observer and his reference system in accelerated motion. Gravitation is one of these phenomena. It follows that if the observer enjoy properly accelerated axes (in time-space, of course), the absolute character of the world about him must be such as to present to him the phenomenon of gravitation. It remains only to identify the sort of world, of which gravitation as it is observed would be a fundamental characteristic.

Euclid’s and Newton’s systems stand as first and second approximations to that world. The Special Relativity Theory constitutes a correction of Newton, presumably because it is a third approximation. We must seek in it those features which we may most hopefully carry along, into the still more general case.

Newton’s system retained the geometry of Euclid. But Minkowski’s invariant expression tells us that Einstein has had to abandon this; for in Euclidean geometry of four dimensions the invariant takes the form: