Gravitation and Space-Time
For the definition of the uniform rectilinear motion of pure inertia Newton’s Euclidean space and independent time were sufficient. For the much more complicated falling under the influence of gravitation and inertia together, evidently a more complicated geometry would be needed. Minkowski’s pseudo-Euclidean time-space also was insufficient. Einstein accordingly introduced a general non-Euclidean four-dimensional time-space, and enunciated his law of motion thus:
Bodies which are not interfered with move in geodesics.
A geodesic in curved space is exactly the same thing as a straight line in flat space. We only call it by its technical name, because the name “straight line” would remind us too much of the old Euclidean space. If the curvature gets very small, or zero, the geodesic becomes very nearly, or exactly, a straight line.
The problem has now become to assign to time-space such curvatures that the geodesics will exactly represent the tracks of falling bodies. Space of two dimensions can just be flat, like a sheet of paper, or curved, like an egg. But in geometry of four dimensions there are several steps from perfect flatness, or “pseudo-flatness,” to complete curvature. Now the law governing the curvature of Einstein’s time-space, i.e., the law of gravitation, is simply that it can never, outside matter, be curved more than just one step beyond perfect (pseudo-)flatness.
Since I have promised not to use any mathematics I can hardly convey to the reader an adequate idea of the difficulty of the problem, nor do justice to the elegance and beauty of the solution. It is, in fact, little short of miraculous that this solution, which was only adopted by Einstein because it was the simplest he could find, does so exactly coincide in all its effects with Newton’s law. Thus the remarkably accurate experimental verification of this law can at once be transferred to the new law. In only one instance do the two laws differ so much that the difference can be observed, and in this case the observations confirm the new law exactly. This is the well known case of the motion of the perihelion of Mercury, whose disagreement with Newton’s law had puzzled astronomers for more than half a century.
Since Einstein’s time-space includes Minkowski’s as a particular case, it can do all that the other was designed to do for electro-magnetism and light. But it does more. The track of a pulse of light is also a geodesic, and time-space being curved in the neighborhood of matter, rays of light are no longer straight lines. A ray of light from a star, passing near the sun, will be bent round, and the star consequently will be seen in a different direction from where it would be seen if the sun had not been so nearly in the way. This has been verified by the observations of the eclipse of the sun of 1919 of May 29.
There is one other new phenomenon predicted by the theory, which falls within the reach of observation with our present means. Gravitation chiefly affects the time-component of the four-dimensional continuum, in such a way that natural clocks appear to run slower in a strong gravitational field than in a weak one. Thus, if we make the hypothesis—which, though extremely probable, is still a hypothesis—that an atom emitting or absorbing light-waves is a natural clock, and the further hypothesis—still very probable, though less so than the former—that there is nothing to interfere with its perfect running, then an atom on the sun will give off light-waves of smaller frequency than a similar atom in a terrestrial laboratory emits. Opinions as yet differ as to whether this is confirmed or contradicted by observations.
* * *
The great strength and the charm of Einstein’s theory do however not lie in verified predictions, nor in the explanation of small outstanding discrepancies, but in the complete attainment of its original aim: the identification of gravitation and inertia, and in the wide range of formerly apparently unconnected subjects which it embraces, and the broad view of nature which it affords.