Of course, we have had a number of theories of gravitation, and none of them have proven successful. Einstein, however, was the first one to suggest a conception of gravitation which has proven extremely significant. He points out that a gravitational force is non-existent for a person falling freely with the acceleration due to gravity. For this person there is no sensation of weight, and if he were in a closed box which is also falling with the same acceleration, he would be unable to decide as to whether his system were falling or situated in interplanetary space where there is no gravitational field. Furthermore, if he were to carry out any optical or electrical experiments in this box he would observe the same results as an experimenter on the earth. A ray of light would travel in a straight line so far as this observer can perceive, while an external observer would, of course, judge differently.

Einstein shows that this is equally true for all kinds of acceleration including that due to rotation. In the case of a rotating body there exists a centrifugal force which tends to make objects on the surface fly outwards, but for an external observer this force does not exist any more than gravity exists for the observer falling freely.

Thus we can draw the general conclusion that a gravitational field or any other field of force may be eliminated by choosing an observer moving with the proper acceleration. For this observer, however, the laws of optics and electricity must be just as valid as for an observer on the earth.

In postulating this equivalence hypothesis Einstein merely makes use of the very familiar observation that, independently of the nature of the material, all bodies possess the same acceleration in a given field of force.

The problem which Einstein now sets out to solve is that of determining the law which shall describe the motion of any system in a field of force in such a general manner as to leave unaltered the fundamental relations of electricity and optics.

In connection with the solution of this problem he finds it necessary to discard the limitations placed on us by ordinary or Euclidean geometry. In this manner geometrical concepts as well as those of force are completely robbed of all notions of absoluteness, and the goal of a general theory of relativity is attained.

The Geometry of Gravitation

Let us consider a circular disc rotating with a uniform peripheral speed. According to the deductions from the “special theory” of relativity, an observer situated near the edge of this disc, but not rotating with it, will observe that units of length measured along the circumference of the disc are contracted. On the other hand, measurements along the diameter, which is at right angles to the direction of motion of the circumference, will show no contraction whatever, and, consequently the observer will find that the ratio of circumference to diameter has not the well known value 3.14159 … but exceeds this value, the difference being greater and greater as the peripheral speed approaches that of light. That is, the laws of ordinary geometry no longer hold true.

However, we know other cases in which the ordinary or Euclidean geometry is not applicable. Thus suppose that on the surface of a sphere we describe a series of concentric circles. Since the surface is curved, we are not surprised at finding that the circumference of any one of these circles is less than 3.14159 … times the distance across the circle as measured on the surface of the sphere. What this means, therefore, is that we cannot use Euclidean geometry to describe measurements on the surface of a sphere, and every schoolboy knows this from comparing Mercator’s projection of the earth’s surface with the actual representation on a globe.