In the neighborhood of these pleats the fourspace is still curved, but to a smaller degree. This we cognise as energy or as a field of force. Thus energy is seen to be the same kind of thing as matter and would therefore be expected to have weight. This was experimentally demonstrated in 1919 when light was in effect actually weighed. Conversely, matter consists of energy; and it is calculated that one liter of water contains sufficient energy to develop a million horsepower for about four years. It is now believed that the sun’s energy is derived from the disintegration of the matter of which it is made.

The method of establishing these identifications will be clear from the following: We already knew that matter is made up of electrons and that radiant energy is electromagnetic and before the advent of this theory it was regarded as certain that practically all observed physical phenomena except gravitation were manifestations of the electromagnetic field. The new theory has confirmed this belief. It is found that the gravitational and electromagnetic conditions of the universe are completely defined if to each point of space-time a gravitational and an electric potential are ascribed. These are magnitudes of the same nature as the direction-defining and length-defining magnitudes which must necessarily be associated with every point of space-time if it is a true “space,” and they are therefore identified with these. By performing ordinary mathematical operations on these magnitudes statements of fact clothed in mathematical form are obtained, which are to be interpreted on the one hand as physical laws and on the other as geometrical properties of the fourspace. Nearly all our physical laws are derivable mathematically in this way, so that an extensive identification is effected which has been fruitful of results.

It has been mentioned that a slight curvature is sometimes cognised as force and as this identification appeared originally as a postulate its history is interesting.

The Genesis of the Theory

An experiment by Michelson and Morley (1887), on which the whole theory is based, made it appear that if a man measures the velocity at which light passes him he will get the same result whether he is stationary, rushing to meet the light, or moving in the same direction as the light. The solution was provided by Einstein in 1905. He suggested that since we know the results of these determinations ought not to agree, something must have happened to the clocks and measuring-rods used in measuring the velocity so that the standards of length and time were not the same in the three cases, the alterations being exactly such as to make the velocity of light constant. This solution is universally accepted as true and is the fundamental postulate. Thus the length of a stick and the rate at which time passes will change as the velocity of the person observing these things changes. If a man measured the length of an aeroplane going past him at 161,000 miles per second it would measure only half the length observed when stationary. If the aeroplane were going with the velocity of light, its length would vanish though its breadth and height would be unaltered. Similarly, if of two twin brothers one were continually moving with reference to the other their ages would gradually diverge, for time would go at different rates for the two. If one moved with the velocity of light, time would stand still for him while for the other it would go on as usual. To get actually younger it would be necessary to move quicker than light which is believed to be impossible. The velocity of light is assumed to be the greatest velocity occurring in nature.

Evidently then if the distance in space and the interval in time separating two given events, such as the firing of a gun and the bursting of the shell, are measured by two observers in uniform relative motion, their estimates will not agree. Consider now the simple problem of measuring the distance between two points on an ordinary drawing-board. If we draw two perpendicular axes, we can define this distance by specifying the lengths of the projections on the two axes of the line joining the points. If we choose two different axes the projections will not be the same but will define the same length. Similarly, in a Euclidean four-space the distance between two points will be defined by the projections on the four axes, but if these axes be rotated slightly, the projections will be different, but will define the same length. Now, returning to the two observers just mentioned, it was noticed by Minkowski in 1908 that if the space measurements between the two events are split into the usual three components, and if the time measurements are multiplied by

, the difference between the two sets of measurements is exactly the same as would have occurred had these two events been points in a Euclidean fourspace, and two different observations made of their distance apart using two sets of axes inclined to each other. The velocity of light is made equal to 1 in this calculation by a suitable choice of units. This discovery threw a vivid light on the problem of space-time, showing that it is probably a true four-space of one negative dimension, a simple derivative of the much-discussed and now familiar Euclidean four-space.

Although this discovery gave a tremendous impetus to the progress of the theory, it is probable that it holds a deeper significance not yet revealed. It is probably a statement of the “stuff” of which the four-space is made, and perhaps also of how it is made; but the problem remains unsolved.