There are a vast number of mechanical contrivances in use among men for thus putting force in store, as it were, and then using it more or less gradually, as may be required. And nature, moreover, does this on a scale so stupendous as to render all human contrivances for this purpose utterly insignificant in comparison. The great agent which nature employs in this work is vegetation. Indeed, it may truly be said that the great function of vegetable life, in all the infinitude of forms and characters which it assumes, is to receive and store up force derived from the emanations of the sun.

Animal life, on the other hand, exists and fulfills its functions by the expenditure of this force. Animals receive vegetable productions containing these reserves of force into their systems, which systems contain arrangements for liberating the force, and employing it for the purposes it is intended to subserve in the animal economy.

The manner in which these processes are performed is in general terms as follows: The vegetable absorbs from the earth and from the air substances existing in their natural condition—that is, united according to their strongest affinities. These substances are chiefly water, containing various mineral salts in solution, from the ground, and carbonic acid from the air. These substances, after undergoing certain changes in the vessels of the plant, are exposed to the influence of the rays of the sun in the leaves. By the power of these rays—including the calorific, the luminous, and the actinic—the natural affinities by which the above-mentioned substances were united are overcome, and they are formed into new combinations, in which they are united by very weak affinities. Of course, they have a strong tendency to break away from the new unions, and fall back into the old. But, by some mysterious and incomprehensible means, the sun has power to lock them, so to speak, in their new forms, so as to require a special condition of things for the releasing of them. Thus they form a reserve of force, which can be held in restraint until the conditions required for their release are realized.

The process can be illustrated more particularly by a single case. Water, one of the substances absorbed by plants, is composed of oxygen and hydrogen, which are united by an affinity of prodigious force. It is the same with carbon and oxygen, in a compound called carbonic acid, which is also one of the principal substances absorbed by plants from the air. Now the heat and other emanations from the sun, acting upon these substances in the leaves, forces the hydrogen and the carbon away from their strong bond of union with oxygen, and sets the oxygen free, and then combines the carbon and hydrogen into a sort of unwilling union with each other—a union from which they are always ready and eager to break away, that they may return to their union with the object of their former and much stronger attachment—namely, oxygen; though they are so locked, by some mysterious means, that they can not break away except when certain conditions necessary to their release are realized.

Hydrocarbons.

The substances thus formed by a weak union of carbon with hydrogen are called hydrocarbons. They comprise nearly all the highly inflammable vegetable substances. Their being combustible means simply that they have a great disposition to resume their union with oxygen—combustion being nothing other than a more or less violent return of a substance to a union with oxygen or some other such substance, usually one from which it had formerly been separated by force—giving out again by its return, in the form of heat, the force by which the original separation had been effected.

A compound formed thus of substances united by very weak affinities, so that they are always ready to separate from each other and form new unions under the influence of stronger affinities, is said to be in a state of unstable equilibrium. It is the function of vegetable life to create these unstable combinations by means of the force derived from the sun; and the combinations, when formed, of course hold the force which formed them in reserve, ready to make itself manifest whenever it is released. Animals receive these substances into their systems in their food. A portion of them they retain, re-arranging the components in some cases so as to form new compounds, but still unstable. These they use in constructing the tissues of the animal system, and some they reserve for future use. As fast as they require the heat and the force which are stored in them they expend, them, thus recovering the force which was absorbed in the formation of them, and which now, on being released, re-appears in the three forms of animal heat, muscular motion, and cerebral or nervous energy.

There are other modes besides the processes of animal life by which the reserved force laid up by the vegetable process in these unstable compounds may be released. In many cases it releases itself under ordinary exposures to the oxygen of the atmosphere. A log of wood—which is composed chiefly of carbon and hydrogen in an unstable union—lying upon the ground will gradually decay, as we term it—that is, its elements will separate from each other, and form new unions with the elements of the surrounding air, thus returning to their normal condition. They give out, in so doing, a low degree of heat, which, being protracted through a course of years, makes up, in the end, the precise equivalent of that expended by the sun in forming the wood—that is, the power expended in the formation of the wood is all released in the dissolution of it.

This process may be greatly accelerated by heat. If a portion of the wood is raised in temperature to a certain point, the elements begin to combine with the oxygen near, with so much violence as to release the reserved power with great rapidity. And as this force re-appears in the form of heat, the next portions of the wood are at once raised to the right temperature to allow the process of reoxidation to go on rapidly with them. This is the process of combustion. Observations and experiments on decaying wood have been made, showing that the amount of heat developed by the combustion of a mass of wood, though much more intense for a time, is the same in amount as that which is set free by the slower process of re-oxidation by gradual decay; both being the equivalent of the amount absorbed by the leaves from the sun, in the process of deoxidizing the carbon and hydrogen when the wood was formed.

The force imprisoned in these unstable compounds may be held in reserve for an unlimited period, so long as all opportunity is denied them of returning the elements that compose them to their original combinations. Such a case occurs when large beds of vegetable substances are buried under layers of sediment which subsequently become stone, and thus shut the hydrocarbonaceous compounds beneath them from all access to oxygen. The beds of coal thus formed retain their reserved force for periods of immense duration; and when at length the material thus protected is brought to the surface, and made to give up its treasured power, it manifests its efficiency in driving machinery, propelling trains, heating furnaces, or diffusing warmth and comfort around the family fireside. In all these cases the heat and power developed from the coal is heat and power derived originally from the sun, and now set free, after having lain dormant thousands and perhaps millions of years.