Under natural conditions the stem is fixed, and it is the petiole which moves under excitation. But a very interesting case presents itself when the petiole is fixed and the stem free. Here is presented the unusual spectacle of the plant or the stem “wagging” in response to excitation.
THE CHANGE OF EXCITABILITY AFTER IMMERSION IN WATER.
The isolated specimen can be kept alive for several days immersed in water. The excitability of the pulvinus, however, undergoes great depression, or even abolition, by the sudden change of turgor brought on by excessive absorption of water. The plant gradually accommodates itself to the changed condition, and the excitability is restored in a staircase manner from zero to a maximum.
In studying the action of a chemical solution on excitability, the solution may be applied through the cut end or directly on the pulvinus. The sudden variation of turgor, due to the liquid, always induces a depression, irrespective of the stimulating or the depressing action of the drug. The difficulty may be eliminated by previous long-continued application of water on the pulvinus and waiting till the attainment of uniform excitability which generally takes place in the course of about three hours. Subsequent application of a chemical solution gives rise to characteristic variation in the response.
QUANTITATIVE DETERMINATION OF THE RATE OF DECAY OF EXCITABILITY IN AN ISOLATED PREPARATION.
Fig. 31—Variation of excitability after section. (1) Immediate effect; (2) variation of excitability in a second specimen during 50 hours: (a) response 4 hours after section; (b) response after 24 hours; (c) after 49 hours. Up-line of record represents responsive fall of the leaf, down-line indicates recovery from excitation.
Variation of excitability after section: Experiment 23.—In order to test the history of the change of excitability resulting from the immediate and after-effect of section, I took an intact plant and fixed the upper half of the stem in a clamp. The response of a given leaf was now taken to the stimulus of an induction shock of 0.1 unit intensity, the unit chosen being that which causes a bare perception of shock in a human being. The specimen was vigorous and the response obtained was found to be a maximum. The stem bearing the leaf was cut at the moment marked in the record with a cross, and water was applied at the cut end. The effect of section was to cause the maximum fall of the leaf, with subsequent recovery. After this, successive responses to uniform stimuli at intervals of 15 minutes show, in (1) of [Fig. 31], that a depression of excitability has been induced owing to the shock caused by section. In course of an hour, however, the excitability had been restored almost to its original value before the section. This was the case with a vigorous specimen, but with less vigorous ones a longer period of about three hours is required for restoration. In certain other cases the response after section exhibits alternate fatigue; that is to say, one response is large and the next feeble, and this alternation goes on for a length of time. The isolated specimen, generally speaking, attains a uniform sensibility after a few hours, which is maintained, with very slight decline under constant external conditions, for about 24 hours. On the third day the fall of excitability is very rapid, and the sensibility declines to zero in about 50 hours after isolation [[Fig. 31] (2)]. We may describe the whole cycle of change as follows: by the shock of operation the isolated preparation is rendered insensitive for nearly an hour, the excitability is then gradually restored almost to its normal value before operation. Under constant external conditions, this excitability remains fairly constant for about 24 hours after which depression sets in. The rate of fall of excitability becomes very rapid 40 hours after the operation, being finally abolished after the fiftieth hour. It is probable that in a colder climate the fall of excitability would be much slower. The most important outcome of this inquiry is the demonstration of the possibility of obtaining persistent and uniform sensibility in isolated preparations. On account of this, not only is the difficulty of supply of material entirely removed but a very high degree of accuracy secured for the investigation itself.