It is true that post-mortem examination of sectioned tissues under the microscope enables us to form a probable hypothesis as regards the contents of certain cells causing geotropic irritation; we have thus the very illuminating theory of statoliths propounded by Noll, Haberlandt and Nemec. But for the clear understanding of the physiological reaction which induces the orientating movement, it is necessary to get hold, as it were, of a single or a group of sensory cells in situ and in a condition of fullest vital activity; to detect and follow by some subtle means the change induced in the perceptive organ and the irradiation of excitation to neighbouring cells, through the entire cycles of reaction, from the onset of geotropic stimulus to its cessation.

The idea of obtaining access to the unknown geo-perceptive cell in the interior of the organ for carrying out various physiological tests would appear to be very extravagant; yet I could not altogether give up the thought that the obscure problem of geotropic action might be attacked with some chance of success, by means of an electric probe which would explore the excitatory electric distribution in the interior of the organ. But the experimental difficulties which stood in the way were so great that for a long time I gave up any serious attempt to pursue the subject. And it is only when the present volume is going through the press that the very first experiments undertaken proved so highly successful that I am able to give a short account of the more important results, which cast a flood of light on the obscurities of geotropic phenomena. The new method has opened out, moreover, a very extensive range of investigation on the activities of cells in the interior of an organ, and enabled me to localise the conducting 'nerve' which transmits excitation in plants. These and other results will be given in the next volume.

Fig. 174.—Diagrammatic representation of the geo-perceptive layer in unexcited vertical, and in excited horizontal position. (See text.).

METHOD OF EXPLORATION BY THE ELECTRIC PROBE.

The principle of the new method will be better understood if I first explained the steps of reasoning by which I was led to discover it. The experiments described in Chapter XL showed that the upper surface of a horizontally laid shoot exhibits sign of excitation by induced galvanometric negativity; that this was due to the stimulus of gravity was made clear by restoration of the plant-organ to the vertical position, when all signs of electric excitation disappeared. Now the skin of the organ on which the electrode was applied could not be the perceptive organ, for the removal of the epidermis did not abolish the geotropic action; the perceptive layer must therefore lie somewhere in the interior. As every side of a radial organ undergoes geotropic excitation, the geo-perceptive cells must therefore be disposed in a cylindrical layer, at some unknown depth from the surface. In a longitudinal section of the shoot, they would appear as two straight lines G and G´ (Fig. 174). In a vertical position the geo-perceptive layer will remain quiescent but rotation through +90° would initiate the excitatory reaction. Let us first centre our attention to the geo-perceptive layer G, which occupies the upper position. This sensitive layer perceives the stimulus and is therefore the focus of irritation; the state of excitation is, as we have seen, detected by induced galvanometric negativity, and the electric change would be most intense at the perceptive layer itself. As the power of transverse conduction is feeble, the excitation of the perceptive layer will irradiate into the neighbouring cells in radial directions with intensity diminishing with distance. Hence the intensity of responsive electric change will decline in both directions outwards and inwards.

The distribution of the excitatory change, initiated at the perceptive layer and irradiated in radial directions is represented by the depth of shading, the darkest shadow being on the perceptive layer. Had excitation been attended with change of light into shade, we would have witnessed the spectacle of a deep shadow (vanishing towards the edges) spreading over the different layers of cells during displacement of the organ from vertical to horizontal; the shadow would have disappeared on the restoration of the organ to the vertical position.

Different shades of excitation in different layers is, however, capable of discrimination by means of an insulated electric probe, which is gradually pushed into the organ from outside. It will at first encounter increasing excitatory change during its approach to the perceptive layer where the irritation will be at its maximum. The indicating galvanometer in connection with the probe will thus indicate increasing galvanometric negativity, which will reach a maximum value at the moment of contact of the probe with the perceptive layer.

It will be understood that the surface electric reaction under geotropic stimulus, which we hitherto obtained, would be relatively feeble compared to the response obtained with direct contact with the maximally excited perceptive layer. When the probe passes beyond the perceptive layer the electric indication of excitation will undergo decline and final abolition. The characteristic effects described above are to be found only under the action of gravitational stimulus; they will be absent when the organ is held in a vertical position and thus freed from geotropic excitation.