Fig. 184.—Magnet M causes deflection of the needle n s, suspended by a thin wire. Increase of magnetisation of M increases deflection, while decrease of magnetisation diminishes the deflection.
I have in Chapter XLIII adduced facts which appear to show that the power of geo-perception declines at high temperatures. As regards motile reaction, we have seen that in Mimosa it increases from a minimum to an optimum temperature beyond which there is a depression (p. 55). As the optimum temperature for geo-perception is not necessarily the same as that for responsive curvature, the result is likely to be very complex.
The case becomes simpler after the attainment of maximum curvature. Enhanced temperature has a tendency to diminish the tropic curvature, as we found in the arrest and reversal of phototropic curvature under the application of warmth (p. 393); it appears as if rise of temperature induced a relatively greater expansion of the contracted side of the organ.
I shall now describe the effect of rising temperature on geotropic curvature in general, including torsion. A horizontally laid shoot curves upwards under geotropic action; a dorsiventral organ, owing to the differential excitabilities of its upper and lower sides, places itself in the so-called dia-geotropic position. A dorsiventral organ, moreover, exhibits a torsional movement under lateral stimulus of gravity.
In the geotropic movements we are able, as stated before, to distinguish three different phases (cf. Fig. 161). In the first, the movement initiated undergoes an increase; in the second, the rate of movement becomes more or less uniform; and in the last phase, a balance takes place between the tropic reaction, and the increasing resistance of the curved or twisted organ to further distortion.
The question now arises whether this position of geotropic equilibrium is permanent, or whether it undergoes modification in a definite way by variation of temperature. I shall proceed to show that the position of equilibrium undergoes a change in one direction by a rise, and in the opposite direction by a fall of temperature. I shall use the term thermo-geotropism as a convenient phrase to indicate the effect of temperature in modification of geotropic curvature and torsion.
I shall first deal with the effect of variation of temperature on geotropic torsion. Under the continued action of stimulus of gravity the torsion increases till it reaches a limit; for the twisted organ resists further distortion and a balance is struck when the twisting and untwisting forces are equal and opposite. In this state of equilibrium the effect of an external agent, say of variation of temperature, will bring about an upset of the balance. The torsion will be increased if the external agent induces an enhancement of geotropic action; it will, on the other hand, be decreased when it induces a diminished reaction.
A physical analogy will make this point clear; imagine a small magnetic needle suspended by a thin wire; the earth's directive force is supposed to be annulled by the well known device of a compensating magnet. A second and larger magnet M is now placed at right angles to the suspended needle; N will repel n and attract s, and a deflection will be produced, the deflecting force of the magnet M being balanced by the force of torsion of suspending wire (Fig. 184).
The state of equilibrium will however be disturbed by variation of the magnetic force of M. It is known that a rise of temperature diminishes magnetisation while lowering of temperature increases it. Hence the deflecting force of the magnet will be diminished under rise of temperature with concomitant diminution of deflection of the needle and the torsion of the wire. Fall of temperature, on the other hand, will cause an increase of deflection and of torsion. The physical illustration given above will help us to understand how the physiological effect of variation of temperature may bring about changes in geotropic curvature and torsion.