4. The after-effect of light.—The spasmodic fall of the leaf of Mimosa towards the evening presents the most difficult problem for solution. I shall first describe the diurnal movement of another plant which presents characteristics similar to those of Mimosa. I shall also demonstrate the various after-effects of light at different parts of the day. These results will offer the fullest explanation of the sudden fall of the leaf towards evening.

As regards the sudden fall of the leaf about evening, Pfeffer regarded it as due to increased mechanical moment of the secondary petioles moving forward on the withdrawal of light. I shall, however, in the course of this paper show, that the characteristic movements occur even after complete removal of the sub-petioles. In the following experiment, carried out with the intact plant, the effect of possible variation of weight is completely eliminated. In spite of this, the diurnal movement exhibited its characteristic phases including sudden movement in the evening.

The experiment I am going to describe will exhibit the diurnal curve obtained by an entirely different method, and will clearly exhibit the thermo-geotropic effect, as well as the immediate and after-effect of light.

DIURNAL VARIATION OF GEOTROPIC TORSION.

I have shown that the pulvinus of Mimosa, subjected laterally to the action of stimulus of gravity, exhibits a torsional response. When the Mimosa plant is laid sideways, so that the plane of separation of the upper and lower halves of the pulvinus is vertical, geotropic stimulus acts laterally on the two halves of the differentially excitable pulvinus. When the less excitable upper half is to the left of the observer (see Fig. 179), the responsive torsion under geotropic stimulus will be clock-wise, the less excitable upper half of the pulvinus being thereby made to face the vertical lines of gravity. When the plant is turned over to the other side (the less excitable upper half being now to the right of the observer) the induced torsion will be counter clock-wise. The response is therefore determined by the directive action of stimulus of gravity. Light has also been shown to give rise to torsion (p. 400). Light acting in the same direction as the stimulus of gravity, i.e., from above, enhances the rate of torsion, the curve of response being due to the joint effects of light and gravity.

Fig. 211.—Record of diurnal variation of torsion in Mimosa leaf. Up-curve represents increase and down-curve decrease of geotropic torsion.

Experiment 221.—I obtained 24 hours' record of variation of torsional response of Mimosa, commencing with thermal-noon at 2 p.m. It is to be borne in mind that increase of torsion indicates increase of geotropic action, just as the erectile movement of the leaf in the normal position indicates the enhanced geotropic effect. Inspection of figure 211 shows that the fall of temperature after thermal-noon was attended by increase of torsion. The curve went up till about 5 p.m., as in the ordinary record of Mimosa. The torsion suddenly decreased with the rapid diminution of light after 5 p.m. The torsion then increased with falling temperature from 9 p.m. till thermal-dawn next morning. After 6 a.m. there is a continuous diminution of torsion till 5 p.m.

We may now summarise the diurnal variation of torsion exhibited by Mimosa. The torsion undergoes a periodic increase during the fall of temperature from afternoon till next morning, and a diminution during rising temperature from morning till afternoon. A sudden diminution of torsion occurs at about 5 p.m. due to the disappearance of light. The torsional record is, to all intents and purposes, a replica of the record of periodic up and down movements of the leaf.

This method of torsion has several advantages over the ordinary method. First, the petiole being supported by the loop of wire, the weight of the leaf has no effect on the curve of response. In the second place, the periodic variation of turgor of the stem, as suggested by Millardet, will not in any way affect the record. Variation of turgor can only cause a swing to and fro, in a direction perpendicular to the plane which divides the pulvinus into upper and lower halves; it can in no way induce a torsional movement, or a variation of the rate of that movement.