Fig. 113.Fig. 114.

Fig. 113.—Positive curvature under moderate phototropic stimulation. Note complete recovery (Dregea).

Fig. 114.—Persistent positive curvature under stronger stimulation (Dregea).

Effect of strong stimulation: Experiment 119.—After recovery of the stem of the last experiment, the same light was applied for 5 minutes. It is seen that the curvature is greatly increased (Fig. 114). Thus the phototropic curvature increases, within limits, with the duration of stimulation. The curvature induced under stronger stimulation remained more or less persistent. In certain instances there was a partial recovery after a considerable length of time; in others curvature was fixed by growth.

PHENOMENON OF RECOVERY.

On the cessation of stimulus of moderate intensity the heliotropically curved organ straightens itself; similar effects are also found in other tropic curvatures. Thus a tendril straightens itself after curvature induced by contact of short duration. The theory of rectipitality has been proposed to account for the recovery, which assumes the action of an unknown regulating power by which the organ is brought back to a straight line; but beyond the assumption of an unknown specific power, the theory affords no explanation of the mechanism by which this is brought about.

The problem before us is to find out the means by which the organ straightens itself after brief stimulation. It will also be necessary to find out why there is no recovery after prolonged stimulation. We have thus to investigate the after-effect of stimulus of various intensities on growth, and the Balanced Method of recording Growth offers us an unique opportunity of studying the characteristic after-effects.

IMMEDIATE AND AFTER-EFFECT OF LIGHT ON GROWTH.

As regards the effect of light I have already shown:

(1) that a sub-minimal stimulus induces an acceleration of growth, but under long continued action the acceleration is converted into normal retardation (p. 225),