Before entering into the fuller consideration of the subject, it will be helpful to form some mental picture of the phenomena of excitation, however inadequate it may be. The excitation is admitted to be due to the molecular upset induced by the shock of stimulus[17]; the increased excitation results from increasing molecular upset brought on by enhanced stimulus. The condition of molecular upset or excitation may be detected from the record of any one of the several concomitant changes, such as the change of form, (contraction or expansion) or change of electric condition (galvanometric negativity or positivity). These means of investigation are not in principle different from those we employ in the detection of molecular distortion in inorganic matter under increasing intensities of an external force.

THE CHARACTERISTIC CURVE.

Thus the molecular upset and rearrangement, in a magnetic substance under increasing magnetising force are inferred from the curve obtained by means of appropriate magnetometric or galvanometric methods. I reproduce the characteristic curve of iron (Fig. 131) in which the abscissa represents increasing magnetising force, and the ordinate, the induced magnetisation. This characteristic curve, giving the relation of cause and effect, will be found to be highly suggestive as regards the similar characteristic curve which gives the relation between increasing stimulus and the resulting enhanced tropic effect in vegetable tissues. The parallelism will be found to be very striking.

Inspection of figure 131 shows that, broadly speaking, the curve of magnetisation may be divided into four parts. In the first part, under feeble magnetic force, the slope of the curve is very small; later, in the second part, as the force increases, the curve becomes very steep; in the third part the slope of the curve remains fairly constant; and finally in the fourth part, the curve rounds off and the rate of ascent again becomes very small. The susceptibility for induced magnetisation is thus very feeble at the beginning; under increasing force, in the second stage, the susceptibility becomes greatly enhanced; in the third stage, the susceptibility remains approximately constant; and in the fourth stage it becomes diminished. We shall presently find that the susceptibility for excitation also undergoes a similar variation at the four different stages of stimulation.

CHARACTERISTICS OF SIMPLE PHOTOTROPIC CURVE.

I have shown (Fig. 130) the relation between the stimulus and the resulting excitation, the latter being determined from the diminution of the rate of growth. Under unilateral action of light, the excitatory contraction gives rise to tropic curvature. We may thus obtain the characteristic excitation curve, by making the plant organ record its tropic movement under continuous action of light applied on one side of the organ.

Fig. 131.Fig. 132.

Fig. 131.—Characteristic curve of iron under increasing magnetising force. (After Ewing).