Fig. 11.—The Torsional Vibrator
Plant P is securely held by a vice V. The two ends are clamped by holders C C′. By means of handles H H′, torsional vibration may be imparted to either the end A or end B of the plant. The end view (b) shows how the amplitude of vibration is predetermined by means of movable stops S S′.
Vibrational stimulus.—I find that torsional vibration affords another very effective method of stimulation ([fig. 11]). The plant-stalk may be fixed in a vice (V), the free ends being held in tubes (C C′), provided with three clamping jaws. A rapid torsional vibration[9] may now be imparted to the stalk by means of the handle (H). The amplitude of vibration, which determines the intensity of stimulus, can be accurately measured by the graduated circle. The amplitude of vibration may be predetermined by means of the sliding stops (S S′).
Intensity of stimulus dependent on amplitude of vibration.—I shall now describe an experiment which shows that torsional vibration is as effective as stimulation by taps, and that its stimulating intensity increases, length of stalk being constant, with amplitude of vibration. It is of course obvious that if the length of the specimen be doubled, the vibration, in order to produce the same effect, must be through twice the angle. I took a leaf-stalk of turnip and fixed it in the torsional vibrator. I then took record of responses to two successive taps, the intensity of one being nearly double that of the other. Having done this, I applied to the same stalk two successive torsional vibrations of 45° and 67° respectively. These successive responses to taps and torsional vibrations are given in [fig. 12], and from them it will be seen that these two modes of stimulation may be used indifferently, with equal effect. The vibrational method has the advantage over tapping, that, while with the latter the stimulus is somewhat localised, with vibration the tissue subjected to stimulus is uniformly stimulated throughout its length.
Fig. 12.—Response in Plant to Mechanical Tap or Vibration
The end B is injured. A tap was given between A and B and this gave the response-curve a. A stronger tap gave the response b. By means of the handle H, a torsional vibration of 45° was now imparted, this gave the response c. Vibration through 67° gave d.
Effectiveness of stimulus dependent on rapidity also. In order that successive stimuli may be equally effective another point has to be borne in mind. In all cases of stimulation of living tissue it is found that the effectiveness of a stimulus to arouse response depends on the rapidity of the onset of the disturbance. It is thus found that the stimulus of the ‘break’ induction shock, on a muscle for example, is more effective, by reason of its greater rapidity, than the ‘make’ shock. So also with the torsional vibrations of plants, I find response depending on the quickness with which the vibration is effected. I give below records of successive stimuli, given by vibrations through the same amplitude, but delivered with increasing rapidity ([fig. 13]).