Fig. 42.—Effect of Steam in Killing Response

The two records to the left exhibit normal response at 17° C. Sudden warming by steam produced at first an increase of response, but five minutes exposure to steam killed the plant (carrot) and abolished the response.

Vibrational stimulus of 30° applied at intervals of one minute; vertical line = ·1 volt.

It will thus be seen that those modifications of vital activity which are produced in plants by temperature variation can be very accurately gauged by electric response. Indeed it may be said that there is no other method by which the moment of cessation of vitality can be so satisfactorily distinguished. Ordinarily, we are able to judge that a plant has died, only after various indirect effects of death, such as withering, have begun to appear. But in the electric response we have an immediate indication of the arrest of vitality, and we are thereby enabled to determine the death-point, which it is impossible to do by any other means.

It may be mentioned here that the explanation suggested by Kunkel, of the response being due to movement of water in the plant, is inadequate. For in that case we should expect a definite stimulation to be under all conditions followed by a definite electric response, whose intensity and sign should remain invariable. But we find, instead, the response to be profoundly modified by any influence which affects the vitality of the plant. For instance, the response is at its maximum at an optimum temperature, a rise of a few degrees producing a profound depression; the response disappears at the maximum and minimum temperatures, and is revived when brought back to the optimum. Anæsthetics and poisons abolish the response. Again, we have the response undergoing an actual reversal when the tissue is stale. All these facts show that mere movement of water could not be the effective cause of plant response.


CHAPTER IX
PLANT RESPONSE—EFFECT OF ANÆSTHETICS AND POISONS

The most important test by which vital phenomena are distinguished is the influence on response of narcotics and poisons. For example, a nerve when narcotised by chloroform exhibits a diminishing response as the action of the anæsthetic proceeds. (See below, [fig. 43].) Similarly, various poisons have the effect of permanently abolishing all response. Thus a nerve is killed by strong alkalis and strong acids. I have already shown how plants which previously gave strong response did not, after application of an anæsthetic or poison, give any response at all. In these cases it was the last stage only that could be observed. But it appeared important to be able to trace the growing effect of anæsthetisation or poisoning throughout the process. There were, however, two conditions which it at first appeared difficult to meet. First it was necessary to find a specimen which would normally exhibit no fatigue, and give rise for a long time to a uniform series of response. The immediate changes made in the response, in consequence of the application of chemical reagents, could then be demonstrated in a striking manner. And with a little trouble, specimens can be secured in which perfect regularity of response is found. The record given in [fig. 16], obtained with a specimen of radish, shows how possible it is to secure plants in which response is absolutely regular. I subjected this to uniform stimulation at intervals of one minute, during half an hour, without detecting the least variation in the responses. But it is of course easier to find others in which the responses as a whole may be taken as regular, though there may be slight rhythmic fluctuations. And even in these cases the effect of reagents is too marked and sudden to escape notice.