Fig. 58.—Effect of Annealing on increasing the Response of both A and B Wires (Tin)
Stimuli (vibration of 160°) applied at intervals of one minute.
In this case it will be found helpful (3) to have recourse to the process of annealing. For if response be a molecular phenomenon, then anything that increases molecular mobility will also increase its intensity. Hence we may expect annealing to enhance responsiveness. This inference will be seen verified in the record given in [fig. 58]. In the case under consideration, the convenient method employed was by pouring hot water into the cell, and allowing it to stand and cool slowly. The first three pairs of responses were taken by stimulating A and B alternately, on mounting in the cell, which was filled with water. Hot water was then substituted, and the cell was allowed to cool down to its original temperature. The six following pairs of responses were then taken. That this beneficial effect of annealing was not due to any accidental circumstance will be seen from the fact that both wires have their sensitiveness equally enhanced.
(4) In addition to this mode of annealing, both wires may be short-circuited and vibrated for a time. Lastly (5) slight stretching in situ will also sometimes be found beneficial. For this purpose I have a screw arrangement.
By one or all of these methods, with a little practice, it is always possible to bring the wires to a normal condition. The responses subsequently obtained become extraordinarily consistent. There is therefore no reason why perfect results should not be arrived at.
Fig. 59.—Uniform Responses in Tin
Effect of single stimulus.—The accompanying figure ([fig. 59]) gives a series, each of which is the response curve for a single stimulus of uniform intensity, the amplitude of vibration being kept constant. The perfect regularity of responses will be noticed in this figure. The wire after a long period of rest may be in an abnormal condition, but after a short period of stimulation the responses become extremely regular, as may be noticed in this figure. Tin is, usually speaking, almost indefatigable, and I have often obtained several hundreds of successive responses showing practically no fatigue. In the figure it will be noticed that the rising portion of the curve is somewhat steep, and the recovery convex to the abscissa, the fall being relatively rapid in its first, and less rapid in its later, parts. As the electric variation is the concomitant effect of molecular disturbance—a temporary upset of the molecular equilibrium—on the cessation of the external stimulus, the excitatory state, and its expression in electric variation, disappear with the return of the molecules to their condition of equilibrium. This process is seen clearly in the curve of recovery.