Again, under very much prolonged stimulation the response may decline to zero, or even undergo a reversal to negative, a phenomenon which we shall find instanced in the reversed response of retina under the long-continued stimulus of light.

We must then recognise that a substance may exist in various molecular conditions, whether due to internal changes or to the action of stimulus. The responses give us indications of these conditions. A complete cycle of molecular modifications can be traced, from the abnormal negative to the normal positive, and then again to negative seen in reversal under continuous stimulation.

FOOTNOTES:

[16] ‘Considering that we have no previous evidence of any chemical or physical change in tetanised nerve, it seems to me not worth while pausing to deal with the criticism that it is not CO2, but “something else” that has given the result.’—Waller, Animal Electricity, p. 59. That this phenomenon is nevertheless capable of physical explanation will be shown presently.

[17] In order to explain the phenomena of electric response, some physiologists assume that the negative response is due to a process of dissimilation, or breakdown, and the positive to a process of assimilation, or building up, of the tissue. The modified or positive response in nerve is thus held to be due to assimilation; after continuous stimulation, this process is supposed to be transformed into one of dissimilation, with the attendant negative response.

How arbitrary and unnecessary such assumptions are will become evident, when the abnormal and normal responses, and their transformation from one to the other, are found repeated in all details in metals, where there can be no question of the processes of assimilation or dissimilation.


CHAPTER XV
INORGANIC RESPONSE—RELATION BETWEEN STIMULUS AND RESPONSE—SUPERPOSITION OF STIMULI

Relation between stimulus and response.—We have seen what extremely uniform responses are given by tin, when the intensity of stimulus is maintained constant. Hence it is obvious that these phenomena are not accidental, but governed by definite laws. This fact becomes still more evident when we discover how invariably response is increased by increasing the intensity of stimulus.