CHAPTER XVI
INORGANIC RESPONSE—EFFECT OF CHEMICAL REAGENT

We have seen that the ultimate criterion of the physiological character of electric response is held to be its abolition when the substance is subjected to those chemical reagents which act as poisons.

Fig. 88.—Action of Poison in Abolishing Response in Nerve (Waller)

Action of chemical reagents.—Of these reagents, some are universal in their action, amongst which strong solutions of acids and alkalis, and salts like mercuric chloride, may be cited. These act as powerful toxic agents, killing the living tissue, and causing electric response to disappear. (See [fig. 88].) It must, however, be remembered that there are again specific poisons which may affect one kind of tissue and not others. Poisons in general may be regarded as extreme cases of depressants. As an example of those which produce moderate physiological depression, potassium bromide may be mentioned, and this also diminishes electric response. There are other chemical reagents, on the other hand, which produce the opposite effect of increasing the excitability and causing a corresponding exaltation of electric response.

We shall now proceed to inquire whether the response of inorganic bodies is affected by chemical reagents, so that their excitability is exalted by some, and depressed or abolished by others. Should it prove to be so, the last test will have been fulfilled, and that parallelism which has been already demonstrated throughout a wide range of phenomena, between the electric response of animal tissues on the one hand, and that of plants and metals on the other, will be completely established.

Action of stimulants on metals.—We shall first study the stimulating action of various chemical reagents. The method of procedure is to take a series of normal responses to uniform stimuli, the electrolyte being water. The chemical reagent whose effect is to be observed is now added in small quantity to the water in the cell, and a second series of responses taken, using the same stimulus as before. Generally speaking, the influence of the reagent is manifested in a short period, but there may be occasional instances where the effect takes some time to develop fully. We must remember that by the introduction of the chemical reagent some change may be produced in the internal resistance of the cell. The effect of this on the deflection is eliminated by interposing a very high external resistance (from one to five megohms) in comparison with which the internal resistance of the cell is negligible. The fact that the introduction of the reagent did not produce any variation in the total resistance of the circuit was demonstrated by taking two deflections, due to a definite fraction of a volt, before and after the introduction of the reagent. These deflections were found equal.