We have seen in our silver cell that if the molecular conditions of the anterior and posterior surfaces were exactly similar, there would be no current. In practice, however, this is seldom the case. There is, generally speaking, a slight difference, and a feeble current in the circuit. It is thus seen that there may be an existing feeble current, to which the effect of light is added algebraically. The stimulus of light may thus increase the existing current of darkness (positive variation). On the cessation of light again, the current of response disappears and there remains only the feeble original current.
In the case of the retina, also, it is curious to note that on closing the eye the sensation is not one of absolute darkness, but there is a general feeble sensation of light, known as ‘the intrinsic light of the retina.’ The effect produced by external light is superposed on this intrinsic light, and certain curious results of this algebraical summation will be noticed later.
Fig. 110—Response-curves of the Sensitive Silver Cell
Showing greater persistence of after-effect when the stimulus is strong.
(a) Short exposure of 2″ to light of intensity 1; (b) short exposure of 2″ to light nine times as strong.
Effect of light of short duration.—If we subject the sensitive cell to a flash of radiation, the effect is not instantaneous but grows with time. It attains a maximum some little time after the incidence of light, and the effect then gradually passes away. Again, as we have seen previously with regard to mechanical strain, the after-effect persists for a slightly longer time when the stimulus is stronger. The same is true of the after-effect of the stimulus of light. Two curves which exhibit this are given below ([fig. 110]). With regard to the first point—that the maximum effect is attained some time after the cessation of a short exposure—the corresponding experiment on the eye may be made as follows: at the end of a tube is fixed a glass disc coated with lampblack, on which, by scratching with a pin, some words are written in transparent characters. The length of the tube is so adjusted that the disc is at the distance of most distinct vision from the end of the tube applied to the eye. The blackened disc is turned towards a source of strong light, and a short exposure is given by the release of a photographic shutter interposed between the disc and the eye. On closing the eye, immediately after a short exposure, it will at first be found that there is hardly any well-defined visual sensation; after a short time, however, the writing on the blackened disc begins to appear in luminous characters, attains a maximum intensity, and then fades away. In this case the stimulus is of short duration, the light being cut off before the maximum effect is attained. The after-effect here is positive, there being no reversal or interval of darkness between the direct image and the after-image, the one being merely the continuation of the other. But we shall see, if light is cut off after a maximum effect is attained by long exposure, that the immediate after-image would be negative (see below). The relative persistence of after-effect of lights of different intensities may be shown in the following manner:
If a bold design be traced with magnesium powder on a blackened board and fired in a dark room, the observer not being acquainted with the design, the instantaneous flash of light, besides being too quick for detailed observation, is obscured by the accompanying smoke. But if the eyes be closed immediately after the flash, the feebler obscuring sensation of smoke will first disappear, and will leave clear the more persistent after-sensation of the design, which can then be read distinctly. In this manner I have often been able to see distinctly, on closing the eyes, extremely brief phenomena of light which could not otherwise have been observed, owing either to their excessive rapidity or to their dazzling character.[19]
After-oscillation.—In the case of the sensitive silver cell, we have seen ([fig. 105]), when it has been subjected for some time to strong light, that the current of response attains a maximum, and that on the stoppage of the stimulus there is an immediate rebound towards recovery. In this rebound there may be an over-shooting of the equilibrium position, and an after-oscillation is thus produced.