‘Later vitalists, however, attempted no analysis of vital force; they employed it in a wholly mystical form as a convenient explanation of all sorts of vital phenomena.... In place of a real explanation a simple phrase such as “vital force” was satisfactory, and signified a mystical force belonging to organisms only. Thus it was easy to “explain” the most complex vital phenomena.’
From this position, with its assumption of the super-physical character of response, it is clear that on the discovery of similar effects amongst inorganic substances, the necessity of theoretically maintaining such dualism in Nature must immediately fall to the ground.
In the previous chapters I have shown that not the fact of response alone, but all those modifications in response which occur under various conditions, take place in plants and metals just as in animal tissues. It may now be well to make a general survey of these phenomena, as exhibited in the three classes of substances.
We have seen that the wave of molecular disturbance in a living animal tissue under stimulus is accompanied by a wave of electrical disturbance; that in certain types of tissue the stimulated is relatively positive to the less disturbed, while in others it is the reverse; that it is essential to the obtaining of electric response to have the contacts leading to the galvanometer unequally affected by excitation; and finally that this is accomplished either (1) by ‘injuring’ one contact, so that the excitation produced there would be relatively feeble, or (2) by introducing a perfect block between the two contacts, so that the excitation reaches one and not the other.
Further, it has been shown that this characteristic of exhibiting electrical response under stimulus is not confined to animal, but extends also to vegetable tissues. In these the same electrical variations as in nerve and muscle were obtained, by using the method of injury, or that of the block.
Passing to inorganic substances, and using similar experimental arrangements, we have found the same electrical responses evoked in metals under stimulus.
Negative variation.—In all cases, animal, vegetable, and metal, we may obtain response by the method of negative variation, so called, by reducing the excitability of one contact by physical or chemical means. Stimulus causes a transient diminution of the existing current, the variation depending on the intensity of the stimulus ([figs. 4], [7], [54]).
Fig. 112.—Uniform Responses in (A) Nerve, (P) Plant, and (M) Metal