“In most animals moving on solids, the centre is supported by variously adapted organs; during the flight of birds and insects it is suspended; but in fishes, which move in a fluid whose density is nearly equal to their specific gravity, the centre is acted upon equally in all directions.”[10]

As the locomotion of the higher animals, to which my remarks more particularly apply, is in all cases effected by levers which differ in no respect from those employed in the arts, it may be useful to allude to them in a passing way. This done, I will consider the bones and joints of the skeleton which form the levers, and the muscles which move them.

The Lever.—Levers are commonly divided into three kinds, according to the relative positions of the prop or fulcrum, the power, and the resistance or weight. The straight lever of each order is equally balanced when the power multiplied by its distance from the fulcrum equals the weight, multiplied by its distance, or P the power, and W the weight, are in equilibrium when they are to each other in the inverse ratio of the arms of the lever, to which they are attached. The pressure on the fulcrum however varies.

Fig. 1.

“In straight levers of the first kind, the fulcrum is between the power and the resistance, as in fig. 1, where F is the fulcrum of the lever AB; P is the power, and W the weight or resistance. We have P : W :: BF : AF, hence P.AF = W.BF, and the pressure on the fulcrum is both the power and resistance, or P + W.

“In the second order of levers (fig. 2), the resistance is between the fulcrum and the power; and, as before, P : W :: BF : AF, but the pressure of the fulcrum is equal to W - P, or the weight less the power.