Fig. 4. Skeleton of the Deer (after Pander and D’Alton). The bones in the extremities of this the fleetest of quadrupeds are inclined very obliquely towards each other, and towards the scapular and iliac bones. This arrangement increases the leverage of the muscular system and confers great rapidity on the moving parts. It augments elasticity, diminishes shock, and indirectly begets continuity of movement, a. Angle formed by the femur with the ilium, b. Angle formed by the tibia and fibula with the femur, c. Angle formed by the cannon bone with the tibia and fibula, d. Angle formed by the phalanges with the cannon bone. e. Angle formed by the humerus with the scapula. f. Angle formed by the radius and ulna with the humerus.
While the bones of animals form levers and fulcra for portions of the muscular system, it must never be forgotten that the earth, water, or air form fulcra for the travelling surfaces of animals as a whole. Two sets of fulcra are therefore always to be considered, viz. those represented by the bones, and those represented by the earth, water, or air respectively. The former when acted upon by the muscles produce motion in different parts of the animal (not necessarily progressive motion); the latter when similarly influenced produce locomotion. Locomotion is greatly favoured by the tendency which the body once set in motion has to advance in a straight line. “The form, strength, density, and elasticity of the skeleton varies in relation to the bulk and locomotive power of the animal, and to the media in which it is destined to move.
“The number of moveable articulations in a skeleton determines the degree of its mobility within itself; and the kind and number of the articulations of the locomotive organs determine the number and disposition of the muscles acting upon them.
“The bones of vertebrated animals, especially those which are entirely terrestrial, are much more elastic, hard, and calculated by their chemical elements to bear the shocks and strains incident to terrestrial progression, than those of the aquatic vertebrata; the bones of the latter being more fibrous and spongy in their texture, the skeleton is more soft and yielding.
“The bones of the higher orders of animals are constructed according to the most approved mechanical principles. Thus they are convex externally, concave within, and strengthened by ridges running across their discs, as in the scapular and iliac bones; an arrangement which affords large surfaces for the attachment of the powerful muscles of locomotion. The bones of birds in many cases are not filled with marrow but with air,—a circumstance which insures that they shall be very strong and very light.
“In the thigh bones of most animals an angle is formed by the head and neck of the bone with the axis of the body, which prevents the weight of the superstructure coming vertically upon the shaft, converts the bone into an elastic arch, and renders it capable of supporting the weight of the body in standing, leaping, and in falling from considerable altitudes.
“Joints.—Where the limbs are designed to move to and fro simply in one plane, the ginglymoid or hinge-joint is applied; and where more extensive motions of the limbs are requisite, the enarthrodial, or ball-and-socket joint, is introduced. These two kinds of joints predominate in the locomotive organs of the animal kingdom.