The remainder of the residue may be dissolved in a little dilute sulphuric acid. This solution will show a characteristic blue fluorescence when quinin is present.

Resinous drugs cause a white precipitate like that of albumin when strong nitric acid is added to the urine. This is dissolved by alcohol.

Salicylates, salol, and similar drugs give a bluish-violet color, which disappears upon heating, upon addition of a few drops of 10 per cent. ferric chlorid solution. When the quantity of salicylates is small, the urine may be acidified with hydrochloric acid and extracted with ether, the ether evaporated, and the test applied to an aqueous solution of the residue.

Tannin and its compounds appear in the urine as gallic acid, and the urine becomes greenish-black (inky, if much gallic acid be present) when treated with a solution of ferric chlorid.

III. MICROSCOPIC EXAMINATION

A careful microscopic examination will often detect structures of great diagnostic importance in urine which seems perfectly clear, and from which only very slight sediment can be obtained with the centrifuge. Upon the other hand, cloudy urines with abundant sediment are often shown by the microscope to contain nothing of clinical significance.

Since the nature of the sediment soon changes, the urine must be examined while fresh, preferably within six hours after it is voided. The sediment is best obtained by means of the centrifuge. If a centrifuge is not available, the urine may be allowed to stand in a conical test-glass for six to twenty-four hours after adding some preservative ([p. 48]). The "torfuge" (Fig. 31) is said to be a very satisfactory substitute for the centrifuge, and is readily portable.

FIG. 31.—Wetherill's torfuge.

A small amount of the sediment should be transferred to a slide by means of a pipet. It is very important to do this properly. The best pipet is a small glass tube which has been drawn out at one end to a tip with rather small opening. The tube or glass containing the sediment is held on a level with the eye, the larger end of the pipet is closed with the index-finger, which must be dry, and the tip is carried down into the sediment. By carefully loosening the finger, but not entirely removing it, a small amount of the sediment is then allowed to run slowly into the pipet. Slightly rotating the pipet will aid in accomplishing this. After wiping off the urine which adheres to the outside, a drop from the pipet is placed upon a clean slide. A hair is then placed in the drop and a large cover-glass applied. Many workers use no cover. This offers a thicker layer and larger area of urine, the chance of finding scanty structures being proportionately increased. It has the disadvantage that any jarring of the room (as by persons walking about) sets the microscopic field into vibratory motion and makes it impossible to see anything clearly; and, since it does not allow of the use of high-power objectives, one cannot examine details as one often wishes to do. A large cover-glass with a hair beneath it avoids these disadvantages, and gives enough urine to find any structures which are present in sufficient number to have clinical significance, provided other points in the technic have been right. It is best, however, to examine several drops; and, when the sediment is abundant, drops from the upper and lower portions should be examined separately.

In examining urinary sediments microscopically no fault is so common, nor so fatal to good results, as improper illumination (see [Figs. 2 and 3]), and none is so easily corrected. The light must be central and very subdued. The two-thirds objective should be used as a finder, while the one-sixth is reserved for examining details.