As students of Physics we observe phenomena under varied circumstances, and endeavour to deduce the laws of their relations. Every natural phenomenon is, to our minds, the result of an infinitely complex system of conditions. What we set ourselves to do is to unravel these conditions, and by viewing the phenomenon in a way which is in itself partial and imperfect, to piece out its features one by one, beginning with that which strikes us first, and thus gradually learning how to look at the whole phenomenon so as to obtain a continually greater degree of clearness and distinctness. In this process, the feature which presents itself most forcibly to the untrained inquirer may not be that which is considered most fundamental by the experienced man of science; for the success of any physical investigation depends on the judicious selection of what is to be observed as of primary importance, combined with a voluntary abstraction of the mind from those features which, however attractive they appear, we are not yet sufficiently advanced in science to investigate with profit.
Intellectual processes of this kind have been going on since the first formation of language, and are going on still. No doubt the feature which strikes us first and most forcibly in any phenomenon, is the pleasure or the pain which accompanies it, and the agreeable or disagreeable results which follow after it. A theory of nature from this point of view is embodied in many of our words and phrases, and is by no means extinct even in our deliberate opinions.
It was a great step in science when men became convinced that, in order to understand the nature of things, they must begin by asking, not whether a thing is good or bad, noxious or beneficial, but of what kind is it? and how much is there of it? Quality and Quantity were then first recognized as the primary features to be observed in scientific inquiry.
As science has been developed, the domain of quantity has everywhere encroached on that of quality, till the process of scientific inquiry seems to have become simply the measurement and registration of quantities, combined with a mathematical discussion of the numbers thus obtained. It is this scientific method of directing our attention to those features of phenomena which may be regarded as quantities which brings physical research under the influence of mathematical reasoning. In the work of the Section we shall have abundant examples of the successful application of this method to the most recent conquests of science; but I wish at present to direct your attention to some of the reciprocal effects of the progress of science on those elementary conceptions which are sometimes thought to be beyond the reach of change.
If the skill of the mathematician has enabled the experimentalist to see that the quantities which he has measured are connected by necessary relations, the discoveries of physics have revealed to the mathematician new forms of quantities which he could never have imagined for himself.
Of the methods by which the mathematician may make his labours most useful to the student of nature, that which I think is at present most important is the systematic classification of quantities.
The quantities which we study in mathematics and physics may be classified in two different ways.
The student who wishes to master any particular science must make himself familiar with the various kinds of quantities which belong to that science. When he understands all the relations between these quantities, he regards them as forming a connected system, and he classes the whole system of quantities together as belonging to that particular science. This classification is the most natural from a physical point of view, and it is generally the first in order of time.
But when the student has become acquainted with several different sciences, he finds that the mathematical processes and trains of reasoning in one science resemble those in another so much that his knowledge of the one science may be made a most useful help in the study of the other.
When he examines into the reason of this, he finds that in the two sciences he has been dealing with systems of quantities, in which the mathematical forms of the relations of the quantities are the same in both systems, though the physical nature of the quantities may be utterly different.