The wind in Baffin’s Bay and Davis Strait blows nearly always in one direction, viz. from the north. The tendency of this is to produce a surface or upper current from the north down into the Atlantic, and to prevent or retard any surface current from the south. The warm current from the Atlantic, taking the path of least resistance, dips under the polar current and pursues its course as an under current.

Mr. Clements Markham, in his “Threshold of the Unknown Region,” is inclined to attribute the motion of the icebergs to tidal action or to counter under currents. That the motion of the icebergs cannot reasonably be attributed to the tides is, I think, evident from the descriptions given both by Midshipman Griffin and by Captain Duncan, who distinctly saw the icebergs moving at the rate of about four knots an hour against a surface current flowing southwards. And Captain Duncan states that the bergs continued their course northwards for several days, till they ultimately disappeared. The probability is that this northward current is composed partly of Gulf-stream water and partly of that portion of polar water which is supposed to flow round Cape Farewell from the east coast of Greenland. This stream, composed of both warm and cold water, on reaching to about latitude 65°N., where it encounters the strong northerly winds, dips down under the polar current and continues its northward course as an under current.

We have on the west of Spitzbergen, as has already been noticed, a similar example of a warm current from the south passing under a polar current. A portion of the Gulf-stream which passes round the west coast of Spitzbergen flows under an arctic current coming down from the north; and it does so no doubt because it is here in the region of prevailing northerly winds, which favour the polar current but oppose the Gulf-stream. Again, we have a cold and rapid current sweeping round the east and south of Spitzbergen, a current of which Mr. Lamont asserts that he is positive he has seen it running at the rate of seven or eight miles an hour. This current, on meeting the Gulf-stream about the northern entrance to the German Ocean, dips down under that stream and pursues its course southwards as an under current.

Several other cases of under currents might be adduced which cannot be explained on the gravitation theory, and which must be referred to a system of oceanic circulation produced by the impulse of the wind; but these will suffice to show that the assumption that the winds can produce only a mere surface-drift is directly opposed to facts. And it will not do to affirm that a current which forms part of a general system of circulation produced by the impulse of the winds cannot possibly be an under current; for in the case referred to we have proof that the thing is not only possible but actually exists. This point, however, will be better understood after we have considered the evidence in favour of a general system of oceanic currents.

Much of the difficulty experienced in comprehending how under currents can be produced by the wind, or how an impulse imparted to the surface of the ocean can ever be transmitted to the bottom, appears to me to result, to a considerable extent at least, from a slight deception of the imagination. The thing which impresses us most forcibly in regard to the ocean is its profound depth. A mean depth of, say, three miles produces a striking impression; but if we could represent to the mind the vast area of the ocean as correctly as we can its depth, shallowness rather than depth would be the impression produced. If in crossing a meadow we found a sheet of water one hundred yards in diameter and only an inch in depth, we should not call that a deep, but a very shallow pool. The probability is that we should speak of it as simply a piece of ground covered with a thin layer of water. Yet such a thin layer of water would be a correct representation in miniature of the ocean; for the ocean in relation to its superficial area is as shallow as the pool of our illustration. In reference to such a pool or thin film of water, we have no difficulty in conceiving how a disturbance on its surface would be transmitted to its bottom. In fact our difficulty is in conceiving how any disturbance extending over its entire surface should not extend to the bottom. Now if we could form as accurate a sensuous impression of the vast area of the ocean as we do of such a pool, all our difficulty in understanding how the impulses of the wind acting on the vast area of the ocean should communicate motion down to its bottom would disappear. It is certainly true that sudden commotions caused by storms do not generally extend to great depths. Neither will winds of short continuance produce a current extending far below the surface. But prevailing winds which can produce such immense surface-flow as that of the great equatorial currents of the globe and the Gulf-stream, which follow definite directions, must communicate their motion to great depths, unless water be frictionless, a thing which it is not. Suppose the upper layer of the ocean to be forced on by the direct action of the winds with a constant velocity of, say, four miles an hour, the layer immediately below will be dragged along with a constant velocity somewhat less than four miles an hour. The layer immediately below this second layer will in turn be also dragged along with a constant velocity somewhat less than the one above it. The same will take place in regard to each succeeding layer, the constant velocity of each layer being somewhat less than the one immediately above it, and greater than the one below it. The question to be determined is, at what depth will all motion cease? I presume that at present we have not sufficient data for properly determining this point. The depth will depend, other things being equal, upon the amount of molecular resistance offered by the water to motion—in other words, on the amount of the shearing-force of the one layer over the other. The fact, however, that motion imparted to the surface will extend to great depths can be easily shown by direct experiment. If a constant motion be imparted to the surface of water, say, in a vessel, motion will ultimately be communicated to the bottom, no matter how wide or how deep the vessel may be. The same effect will take place whether the vessel be 5 feet deep or 500 feet deep.

The known Condition of the Ocean inconsistent with Dr. Carpenter’s Hypothesis.—Dr. Carpenter says that he looks forward with great satisfaction to the results of the inquiries which are being prosecuted by the Circumnavigation Expedition, in the hope that the facts brought to light may establish his theory of a general oceanic circulation; and he specifies certain of these facts which, if found to be correct, will establish his theory. It seems to me, however, that the facts to which he refers are just as explicable on the theory of under currents as on the theory of a general oceanic circulation. He begins by saying, “If the views I have propounded be correct, it may be expected that near the border of the great antarctic ice-barrier a temperature below 30° will be met with (as it has been by Parry, Martens, and Weyprecht near Spitzbergen) at no great depth beneath the surface, and that instead of rising at still greater depths, the thermometer will fall to near the freezing-point of salt water” (§ 39).

Dr. Carpenter can hardly claim this as evidence in favour of his theory; for near the borders of the ice-barrier the water, as a matter of course, could not be expected to have a much higher temperature than the ice itself. And if the observations be made during summer months, the temperature of the water at the surface will no doubt be found to be higher than that of the bottom; but if they be carried on during winter, the surface-temperature will doubtless be found to be as low as the bottom-temperature. These are results which do not depend upon any particular theory of oceanic circulation.

“The bottom temperature of the North Pacific,” he continues, “will afford a crucial test of the truth of the doctrine. For since the sole communication of this vast oceanic area with the arctic basin is a strait so shallow as only to permit an inflow of warm surface water, its deep cold stratum must be entirely derived from the antarctic area; and if its bottom temperature is not actually higher than that of the South Pacific, the glacial stratum ought to be found at a greater depth north of the equator than south of it” (§ 39).

This may probably show that the water came from the antarctic regions, but cannot possibly prove that it came in the manner which he supposes.

“In the North Atlantic, again, the comparative limitation of communication with the arctic area may be expected to prevent its bottom temperature from being reduced as low as that of the Southern Atlantic” (§ 39). Supposing the bottom temperature of the South Atlantic should be found to be lower than the bottom temperature of the North Atlantic, this fact will be just as consistent with the theory of under currents as with his theory of a general movement of the ocean.