Ocean-currents in Relation to Change of Climate.—In my attempts to prove that oceanic circulation is produced by the winds and not by difference of specific gravity, and that ocean-currents are the great distributors of heat over the globe, my chief aim has been to show the bearing which these points have on the grand question of secular changes of climate during geological epochs, more particularly in reference to that mystery the cause of the glacial epoch.

In concluding this discussion regarding oceanic circulation, I may therefore be allowed briefly to recapitulate those points connected with the subject which seem to shed most light on the question of changes of climate.

The complete agreement between the systems of ocean-currents and winds not only shows that the winds are the impelling cause of the currents, but it also indicates to what an extent the directions of the currents are determined by the winds, or, more properly, to what an extent their directions are determined by the direction of the winds.

We have seen in [Chapter II.] to what an enormous extent the climatic conditions of the globe are dependent on the distribution of heat effected by means of ocean-currents. It has been there pointed out that, if the heat conveyed from inter-tropical to temperate and polar regions by oceanic circulation were restored to the former, the equatorial regions would then have a temperature about 55° warmer, and the high polar regions a climate 83° colder than at present. It follows, therefore, that any cause which will greatly affect the currents or greatly change their paths and mode of distribution, will of necessity seriously affect the climatic condition of the globe. But as the existence of these currents depends on the winds, and their direction and form of distribution depend upon the direction and form of distribution of the winds, any cause which will greatly affect the winds will also greatly affect the currents, and consequently will influence the climatic condition of the globe. Again, as the existence of the winds depends mainly on the difference of temperature between equatorial and polar regions, any cause which will greatly affect this difference of temperature will likewise greatly affect the winds; and these will just as surely react on the currents and climatic conditions of the globe. A simple increase or decrease in the difference of temperature between equatorial and polar regions, though it would certainly produce an increase or a decrease, as the case might be, in the strength of the winds, and consequently in the strength of the currents, would not, however, greatly affect the mode of distribution of the winds, nor, as a consequence, the mode of distribution of the currents. But although a simple change in the difference of temperature between the equator and the poles would not produce a different distribution of aërial, and consequently of ocean-currents, nevertheless a difference in the difference of temperature between the equator and the two poles would do so; that is to say, any cause that should increase the difference of temperature between the equator and the pole on the one hemisphere, and decrease that difference on the other, would effect a change in the distribution of the aërial currents, which change would in turn produce a corresponding change in the distribution of ocean-currents.

It has been shown[101] that an increase in the eccentricity of the earth’s orbit tends to lower the temperature of the one hemisphere and to raise the temperature of the other. It is true that an increase of eccentricity does not afford more heat to the one hemisphere than to the other; nevertheless it brings about a condition of things which tends to lower the temperature of the one hemisphere and to raise the temperature of the other. Let us imagine the eccentricity to be at its superior limit, 0·07775, and the winter solstice in the aphelion. The midwinter temperature, owing to the increased distance of the sun, would be lowered enormously; and the effect of this would be to cause all the moisture which now falls as rain during winter in temperate regions to fall as snow. Nor is this all; the winters would not merely be colder than now, but they would also be much longer. At present the summer half-year exceeds the winter half year by nearly eight days; but at the period in question the winters would be longer than the summers by upwards of thirty-six days. The heat of the sun during the short summer, for reasons which have already been explained, would not be sufficient to melt the snow of winter; so that gradually, year by year, the snow would continue to accumulate on the ground.

On the southern hemisphere the opposite condition of things would obtain. Owing to the nearness of the sun during the winter of that hemisphere, the moisture of the air would be precipitated as rain in regions where at present it falls as snow. This and the shortness of the winter would tend to produce a decrease in the quantity of snow. The difference of temperature between the equatorial and the temperate and polar regions would therefore be greater on the northern than on the southern hemisphere; and, as a consequence, the aërial currents of the former hemisphere would be stronger than those of the latter. This would be more especially the case with the trade-winds. The N.E. trades being stronger than the S.E. trades would blow across the equator, and the median line between them would therefore be at some distance to the south of the equator. Thus the equatorial waters would be impelled more to the southern than to the northern hemisphere; and the warm water carried over in this manner to the southern hemisphere would tend to increase the difference of temperature between the two hemispheres. This change, again, would in turn tend to strengthen the N.E. and to weaken the S.E. trades, and would thus induce a still greater flow of equatorial waters into the southern hemisphere—a result which would still more increase the difference of temperature between the northern and southern hemisphere, and so on—the one cause so reacting on the other as to increase its effects, as was shown at length in [Chapter IV.]

It was this mutual reaction of those physical agents which led, as was pointed out in [Chapter IV.], to that extraordinary condition of climate which prevailed during the glacial epoch.

There is another circumstance to be considered which perhaps more than any thing else would tend to lower the temperature of the one hemisphere and to raise the temperature of the other; and this is the displacement of the great equatorial current. During a glacial period in the northern hemisphere the median line between the trades would be shifted very considerably south of the equator; and the same would necessarily be the case with the great equatorial currents, the only difference being that the equatorial currents, other things being equal, would be deflected farther south than the median line. For the water impelled by the strong N.E. trades would be moving with greater velocity than the waters impelled by the weaker S.E. trades, and, of course, would cross the median line of the trades before its progress southwards could be arrested by the counteracting influence of the S.E. trades. Let us glance briefly at the results which would follow from such a condition of things. In the first place, as was shown on former occasions,[102] were the equatorial current of the Atlantic (the feeder of the Gulf-stream) shifted considerably south of its present position, it would not bifurcate, as it now does, off Cape St. Roque, owing to the fact that the whole of the waters would strike obliquely against the Brazilian coast and thus be deflected into the Southern Ocean. The effect produced on the climate of the North Atlantic and North-Western Europe by the withdrawal of the water forming the Gulf-stream, may be conceived from what has already been stated concerning the amount of heat conveyed by that stream. The heat thus withdrawn from the North Atlantic would go to raise the temperature of the Southern Ocean and antarctic regions. A similar result would take place in the Pacific Ocean. Were the equatorial current of that ocean removed greatly to the south of its present position, it would not then impinge and be deflected upon the Asiatic coast, but upon the continent of Australia; and the greater portion of its waters would then pass southward into the Southern Ocean, while that portion passing round the north of Australia (owing to the great strength of the N.E. trades) would rather flow into the Indian Ocean than turn round, as now, along the east coast of Asia by the Japan Islands. The stoppage of the Japan current, combined with the displacement of the equatorial current to the south of the equator, would greatly lower the temperature of the whole of the North Pacific and adjoining continents, and raise to a corresponding degree the temperature of the South Pacific and Southern Ocean. Again, the waters of the equatorial current of the Indian Ocean (owing to the opposing N.E. trades), would not, as at present, find their way round the Cape of Good Hope into the North Atlantic, but would be deflected southwards into the Antarctic Sea.

We have in the present state of things a striking example of the extent to which the median line between the two trades may be shifted, and the position of the great equatorial currents of the ocean may be affected, by a slight difference in the relative strength of the two aërial currents. The S.E. trades are at present a little stronger than the N.E.; and the consequence is that they blow across the equator into the northern hemisphere to a distance sometimes of 10 or 15°, so that the mean position of the median line lies at least 6 or 7 degrees north of the equator.

And it is doubtless owing to the superior strength of the S.E. trades that so much warm water crosses the equator from the South to the North Atlantic, and that the main portion of the equatorial current flows into the Caribbean Sea rather than along the Brazilian coast. Were the two trades of equal strength, the transference of heat into the North Atlantic from the southern hemisphere by means of the Southern Atlantic and equatorial currents would be much less than at present. The same would also hold true in regard to the Pacific.