The carbonization of wood in the common way is well known: after it is cut to the lengths required, it is piled on the ground in a pyramidal form, and covered with sod and clay, leaving a place for the current of air, and the smoke. The wood is then set on fire, and when the whole is burnt to a coal the vents, &c. are closed with sod and clay.

Nicholson (Chemical Dictionary) observes, that in the forest of Benon, near Rochelle, great attention is paid to the manufacture, so that the charcoal made there fetches twenty-five or thirty per cent. more than any other. The wood is that of the black oak. It is taken from ten to fifteen years old, the trunk as well as the branches, cut into billets about four feet long, and not split. The largest pieces, however, seldom exceed six or seven inches in diameter. The end that rests on the ground is cut a little sloping, so as to touch it merely with an edge, and they are piled nearly upright, but never in more than one story. The wood is covered all over about four inches thick with dry grass or fern, before it is enclosed in the usual manner with clay; and when the wood is charred, half a barrel of water is thrown over the pile, and earth to the thickness of five or six inches is thrown on, after which it is left four-and-twenty hours to cool. The wood is always used in the year in which it is cut.

Turf or peat has been charred lately in France, it is said, by a peculiar process, and, according to the account given in Sonnini's Journal, is superior to wood for this purpose. Charcoal of turf kindles slower than that of wood, but emits more flame, and burns longer. It boiled a given quantity of water four times, while an equal weight of wood charcoal boiled the same quantity but once. In a goldsmith's furnace, it fused eleven ounces of gold in eight minutes, while wood charcoal required sixteen. The malleability of the gold, too, was preserved in the former instance, but not in the latter. Iron heated red-hot by it, in a forge, was rendered more malleable.

In charring wood it has been conjectured, that a portion of it is sometimes converted into a pyrophorus, and that the explosions that happen in powder-mills are sometimes owing to this.

Bartholdi supposes, that such explosions are owing to the formation of phosphoretted hydrogen gas, while others attribute them to the absorption of oxygen, by the hydrogen contained in the coal, and the consequent evolution of free caloric. Percussion, which necessarily takes place in mixing the materials of gunpowder by stampers, no doubt accelerates the combustion. The addition of water, and having the charcoal previously pulverized, will prevent such accidents. (See [Gunpowder.])

Coal prepared in the manner above stated, is liable to many foreign admixtures, nor can the process be so well regulated as to produce coal of a uniform quality throughout. The present improved process has many advantages, as experience has proved. It consists in charring the wood in confined vessels, made of iron. These are usually cylindrical, furnished with an iron cover, and placed in furnaces. The pyroacetic, formerly called the pyroligneous, acid, which is formed in the destructive distillation of wood, is caught for use. This acid is useful to the calico printer, dyer, &c. in making their iron liquor, and when purified, is employed in Europe in the place of vinegar, as it is more pungent, and highly concentrated.

When pine and various kinds of wood, which yield turpentine, are carbonized, we obtain tar during the process.

Chaptal informs us, that tar is obtained from the wood of the trunk, branches, and roots of the pine, which are heaped together, covered with turf, and set on fire to produce a close combustion, in the same manner as for making charcoal. The oily parts which are disengaged, trickle down, and are received in a gutter, which serves to convey them to a tub. The most fluid part is sold under the name of huile de cade; and the thicker part is the tar used for paying or painting the parts of shipping and other vessels.

According to the wood submitted to the process of charring, the products are, more or less, various; but in all cases it is only the solid part, or ligneous fibre, that furnishes the coal. By the ordinary process we obtain sundry volatile products, among which are pyroacetic acid and carburetted hydrogen gas.

When wood is carbonized in the usual manner, it yields from 16 to 17 parts of charcoal in the hundred; but when the operation is conducted in close vessels, the product is 28 per cent. a saving of eleven or twelve per cent. By this difference in the quantity, it appears that eleven or twelve per cent. is burnt in the common process.