The sulphur is not (properly speaking) a necessary ingredient in gunpowder, since nitre and charcoal alone, well mixed, will explode; but the use of the sulphur seems to be to diffuse the fire instantaneously through the whole mass of powder. But, if the following experiments are correct, it should seem that the advantage gained by using sulphur in increasing the force of explosion only applies to small charges; but in quantities of a few ounces, the explosive, or at least the projecting force of powder without sulphur, is full as great as with sulphur.

The following are a few out of many trials made at the Royal Manufactory at Essonne, near Paris, in the year 1756, to determine the best proportions of all the ingredients. Of powder made with nitre and charcoal alone, 16 of nitre and 4 of charcoal was the strongest, and gave a power of 9 in the eprouvette. With all three ingredients, 16 of nitre, 4 of charcoal, and 1 of sulphur, raised the eprouvette to 15, and both a less and a greater quantity of sulphur produced a smaller effect. Then diminishing the charcoal, a powder of 16 of nitre, 3 of charcoal, and 1 of sulphur gave a power of 17 in the eprouvette, which was the highest produced by any mixture. This last was also tried in the mortar-eprouvette against the common proof powder, and was found to maintain a small superiority. The powder made without sulphur in the proportions above indicated was also tried in the mortar-eprouvette, and with the following singular result: when the charge was only two ounces it projected a sixty pound copper ball 213 feet, and the strongest powder with sulphur projected it 249 feet; but in a charge of three ounces, the former projected the ball 475 feet and the latter only 472 feet; and on the other hand the great inferiority of force in the smaller eprouvette of the powder without sulphur has been just noticed.

It is a fact, known from time immemorial, that by the combustion of bodies caloric is generated, or chemically speaking, is given out in a free state; but the cause was not known until the anti-phlogistic theory of chemistry was established, which abolished as untenable the old doctrine of phlogiston; The quantity of caloric, which passes from a latent to a free state in combustion, as combustion is nothing more than the phenomena occasioned by this transition, is variable; and depends therefore on the substances burnt, and the nature of what is denominated the supporter of combustion.

The experiments of MM. Lavoisier and Laplace have shown the quantity of caloric produced by the combustion of different substances by the calorimeter, a table of which may be seen in Thenard. (Traité de Chimie, &c. t. i, p. 81). From this table it appears, that while a mixture of one pound of saltpetre with one pound of sulphur liquefied, by its combustion, thirty-two pounds of ice, one pound of hydrogen gas melted 313 lbs. phosphorus 100 lbs. and the same quantity of charcoal 96.351 lbs.; and by the detonation of a mixture of one pound of saltpetre with 0.3125 lbs. of charcoal (French weight) melted only 12 lbs. of ice.

In the table of the elevation of temperature by the combustion of different substances, the caloric being communicated to water, (Thenard, Traité de Chimie, vol. i, p. 82), it appears, that by the combustion of equal weights of hydrogen gas, phosphorus, charcoal, and oak, the caloric produced was as follows:

Hydrogen23,400°
Phosphorus7,500
Charcoal7,226
Oak wood3,146

The reader may find some interesting calculations on this subject in Biot's Traité de Physique, &c. tome iv, p. 704, and 716.

It appears also, that in the combustion of one pound of hydrogen gas, six pounds of oxygen were consumed, and according to Crawford's experiment the caloric given out melted 480 lbs. of ice. One pound of phosphorus requires for combustion one and a half pounds of oxygen gas; one pound of charcoal, 2.8; and one pound of sulphur, 1.36. See Thomson's System of Chemistry, vol i, p. 133.

While noticing this subject we may remark, that in combustion heat and light, according to the Lavoiserian doctrine, are given out from the oxygen gas, while the oxygen unites with the combustible body: which has since been modified by supposing, that while caloric is evolved from the gas, the light is emitted from the burning body. There are some facts contrary to the received theory of combustion; that of gunpowder furnishes one. We have also another instance in the combustion of oil of turpentine by nitric acid.

Gunpowder will burn with great avidity in close vessels, or under an exhausted receiver, and we know that the oxygen is already combined with azote in the nitric acid of the nitrate of potassa, and consequently not in a gaseous but a solid state; yet we also know that a great quantity of caloric and light are emitted during the combustion, and nearly all the products are gaseous. The other anomaly is, that as combustion is produced by pouring nitric acid on spirit of turpentine, the oxygen being already combined with azote, caloric and light are evolved by the mixture of the two fluids, from which it is inferred, that oxygen is capable of giving out caloric and light, not only when liquid, but even after combustion. In the instance of gunpowder, in order to explain the combustion which takes place independently of atmospheric air, or any aeriform supporter, "the caloric and light," in the opinion of Dr. Thomson, (Chemistry, i, 128) "must be supposed to be emitted from a solid body during its conversion into gas, which ought to require more caloric and light for its existence in the gaseous state than the solid itself contained."—Mr. Lavoisier (Elements of Chemistry, p. 157,) observes, that he and M. De la Place deflagrated a convenient quantity of nitre and charcoal in an ice apparatus, and found that 12 lbs. of ice were melted by the deflagration of one pound of nitre. After giving the proportions of acid and alkali in nitre, and the quantity of oxygen and azote in the acid, he observes, that during the deflagration, 1451/3 grains of carbon have suffered combustion along wit 3738.34 grains of oxygen; and as 12 lbs. of ice were melted, one pound of oxygen burnt in the same manner would have melted 29.5832 lbs. of ice. To which, if we add the quantity of caloric retained by a pound of oxygen, after combining with carbon to form carbonic acid gas, which was already ascertained to be capable of melting 29.13844 lbs. of ice, we shall have for the total quantity of caloric remaining in a pound of oxygen when combined with nitrous gas in the nitric acid, 58.72164; which is the number of pounds of ice, the caloric remaining in the oxygen in that state is capable of melting. In the state of oxygen gas it contains at least 66.66667. M. Lavoisier infers then, that the oxygen in combining with azote to form nitric acid, only loses 7.94502, and that "this enormous quantity of caloric, retained by oxygen in its combination into nitric acid, explains the cause of the great disengagement of caloric during the deflagration of nitre; or, more strictly speaking, upon all occasions of the decomposition of nitric acid." This view of the subject may enable us to explain the production of caloric, in those cases of combustion which cannot be explained on the ordinary principles; and, with regard to gunpowder, the accension of oil of turpentine by nitric acid, and similar cases, we may conclude, as the only rationale which seems applicable, that it is nothing more than the transition of caloric from one state to another, from a latent to a free state. Be this as it may, the combustion in such instances furnishes an anomaly to the already established doctrine, of the absorption of oxygen, or the base of the supporter, and the evolution of caloric from the gas, and not from the combustible; or, in other words, the change of caloric in the supporter from a combined to an uncombined state.