INFLUENCE OF ROCK STRUCTURE ON THE FORM OF THE GROUND.
|
|
The Edinberg Geographical Institute J. G. Bartholemew, F.R.G.S. Click on image to view larger size image. | |
Thus, in the evolution of the surface-features of the earth, the working of two great classes of geological agents is conspicuous—the subterranean and the sub-aërial. The sinking down of the crust upon the cooling nucleus would appear to have given rise to the great oceanic depressions and continental ridges, just as the minor depressions within our continental areas have originated many mountain-chains. In the area undergoing depression the strata are subjected to intense lateral pressure, to which they yield along certain lines by folding up. The strata forming the Alps, which are 130 miles broad, originally occupied a width of 200 miles; and similar evidence of enormous compression is conspicuous in the structure of all mountains of elevation. Great elevation, however, may take place with little or no disturbance of stratification: wide continental areas have been slowly upheaved en masse, and sea-bottoms and low-lying plains have in this way been converted into lofty plateaux.[F] Many of the most conspicuous features of the earth’s surface, therefore, are due directly to subterranean action. All those features, however, become modified by denudation, and eventually the primeval configuration may be entirely destroyed, and replaced by contours which bear no direct relation to the form of the original surface. (See Fig. 9.) In the newer mountain-chains of the globe the surface-features are still largely those due directly to upheaval; so in some recently elevated plateaux the ground has not yet been cut up and converted into irregular mountain-masses. Many of the more ancient mountain-chains and ranges, however, have been exposed so long to the abrading action of the denuding agents that all trace of their original contour has vanished. And in like manner plateaux of great age have been so highly denuded, so cut and carved by the tools of erosion, that their plateau character has become obscured. They have been converted into undulating mountainous and hilly regions. Everywhere throughout the world we read the same tale of subsidence and accumulation, of upheaval and denudation. The ancient sedimentary deposits which form the major portion of our land-surfaces, are the waste materials derived from the demolition of plains, plateaux, and mountains of elevation. In some mountain-regions we read the evidence of successive epochs of uplift, separated by long intervening periods of erosion, followed by depression and accumulation of newer sediments over the denuded surface. Thus the Alps began to be elevated towards the close of Palæozoic times. Erosion followed, and subsequently the land became depressed, and a vast succession of deposits accumulated over its surface during the long-continued Mesozoic era into early Cainozoic times. Again, a great upheaval ensued, and the Mesozoic and Eocene strata were violently contorted and folded along the flanks of the chain. Then succeeded another period of erosion and depression, which was again interrupted by one or more extensive upheavals. Away from those lines of weakness which we call mountain-chains, we constantly encounter evidence of widespread movements of elevation, during which broad areas of sea-bottom have been upheaved to the light of day, and, after suffering extensive denudation have subsided, to be again overspread with the spoils of adjacent lands, and then upheaved once more. And such oscillations of level have occurred again and again. Looking back through the long vista of the past, we see each continental area in a state of flux—land alternating with sea, and sea with land—mountains and plateaux appearing and disappearing—a constant succession of modifications, brought about by the antagonistic subterranean and sub-aërial agents.
The hills are shadows, and they flow
From form to form, and nothing stands;
They melt like mists, the solid lands,
Like clouds they shape themselves and go.
[F] This is the generally accepted view of modern geologists. It is very difficult, however, to understand how a wide continental area can be vertically upheaved. It seems more probable that the upheaval of the land is only apparent. The land seems to rise because the sea retreats as the result of the subsidence of the crust within the great oceanic basins. See Article xiv. (1892.)

