If it be difficult to understand how the “earth-movement hypothesis” can account for the origin of one glacial epoch, the difficulty is not lessened when we remember that there are two or more such epochs to account for. And until the advocates of that hypothesis can furnish us with some reliable evidence, they can hardly expect us to believe in their mysterious upheavals and depressions of northern and temperate regions, and in the no less wonderfully rhythmic movements of the Isthmus of Panama. In fine, the views which I have been controverting seem to me to be untenable, inasmuch as they are founded on mere assumptions, and do not even give a reasonable and intelligible explanation of the phenomena of glaciated regions, while they practically ignore or leave unsolved the problem of interglacial conditions.

Some five-and-twenty years have now elapsed since my lamented friend and colleague, James Croll, published his well-known physical theory of the Glacial period. That theory, as you all know, has been frequently criticised by physicists and others, to whose objections Croll made a final reply in his Climate and Cosmology. In that work he has successfully defended his views, and even added considerably to the strength of his general argument. I am not aware that since then any serious objections to Croll’s theory have appeared. The only one indeed that seems to have attracted attention is that which has been urged especially by certain American geologists. Their belief is that the close of the Glacial period must have taken place at a much more recent date than Croll has inferred. And this belief of theirs is based upon various estimates which have been made as to the time required for the erosion of valleys and the accumulation of alluvial deposits since the Glacial period. Thus, according to Mr. Gilbert, the post-glacial gorge of Niagara, at the present rate of erosion, must have been excavated within 7000 years; while Mr. Winchell, from similar measurements of the post-glacial erosion of the Falls of St. Anthony, concludes that 8000 years have elapsed since the close of the Ice Age. I might cite a number of similar estimates that tend to show that since the close of the Glacial period only 7000 or 10,000 years have elapsed. What will archæologists say to this conclusion? We know that Egypt was already occupied by a civilised people nearly 6000 years ago, and their marvellously advanced civilisation at that time presupposes, according to Egyptologists, many thousands of years of development. Are we, then, prepared to admit that the close of the Ice Age coincided with the dawn of Egyptian civilisation? But all American observers are not so parsimonious with regard to post-glacial time. Thus Professor Spencer has given the age of the Falls of Niagara as 24,000 years, and he informed me recently that this does not represent half of the time since the formation of the third great series of glacial deposits of the Canadian uplands. In our own Continent similar estimates have been based on the rate of erosion of river-valleys, the rate of accumulation of alluvial deposits, of peat-bogs, of stalagmite in caves, and what not, with results that, to say the least, are rather discordant. The fact is that all such measurements and estimates, however carefully conducted and cautiously made, are in the nature of things unreliable. We are insufficiently acquainted with all the factors of the problem to be solved, and I cannot therefore agree with those who attribute much weight to conclusions based on such uncertain data. Dr. Croll’s theory may eventually be modified, but I feel sure that it will not be overturned by the inconclusive and unsatisfactory estimates to which I have referred. Moreover, opponents of that theory may be reminded that its truth does not rest on the accuracy of its author’s conclusion as to the date of the last Ice Age. That periods of high eccentricity of the earth’s orbit have occurred is beyond all doubt, but whether the formulæ employed by Croll in calculating the date of the last great cycle can be relied upon for that purpose is quite another question. At present, so far as I understand the facts, the glacial and the interglacial phenomena are explained by the astronomical theory, and by no other. It gives a simple, coherent, and consistent interpretation of the climatic vicissitudes of the Pleistocene and post-glacial periods, and in especial it is the only theory that throws any light on the very remarkable climates of interglacial times.


[X.]

The Glacial Succession in Europe.[BZ]

[BZ] Trans. Royal Soc. Edinburgh, vol. xxxvii. (1892).

For many years geologists have recognised the occurrence of at least two boulder-clays in the British Islands and the corresponding latitudes of the Continent. It is no longer doubted that these are the products of two separate and distinct glacial epochs. This has been demonstrated by the appearance of intercalated deposits of terrestrial, freshwater, or, as the case may be, marine origin. Such interglacial accumulations have been met with again and again in Britain, and they have likewise been detected at many places on the Continent, between the border of the North Sea and the heart of Russia. Their organic contents indicate in some cases cold climatic conditions; in others, they imply a climate not less temperate or even more genial than that which now obtains in the regions where they occur. Nor are such interglacial beds confined to northern and north-western Europe. In the Alpine Lands of the central and southern regions of our Continent they are equally well developed. Impressed by the growing strength of the evidence, it is no wonder that geologists, after a season of doubt, should at last agree in the conclusion that the glacial conditions of the Pleistocene period were interrupted by at least one protracted interglacial epoch. Not a few observers go further, and maintain that the evidence indicates more than this. They hold that three or even more glacial epochs supervened in Pleistocene times. This is the conclusion I reached many years ago, and I now purpose reviewing the evidence which has accumulated since then, in order to show how far it goes to support that conclusion.

In our islands we have, as already remarked, two boulder-clays, of which the lower or older has the wider extension southwards, for it has been traced as far as the valley of the Thames. The upper boulder-clay, on the other hand, does not extend south of the midlands of England. In the north of England, and throughout Scotland and the major portion of Ireland, it is this upper boulder-clay which usually shows at the surface. The two clays, however, frequently occur together, and are exposed again and again in deep artificial and natural sections, as in pits, railway-cuttings, quarries, river-banks, and sea-cliffs. Sometimes the upper clay rests directly upon the lower; at other times they are separated by alluvial and peaty accumulations or by marine deposits. The wider distribution of the lower till, the direction of transport of its included erratics, and the trend of the underlying roches moutonnées and rock-striæ, clearly show that the earlier mer de glace covered a wider area than its successor, and was confluent on the floor of the North Sea with the Scandinavian ice-sheet. It was during the formation of the lower till, in short, that glaciation in these islands attained its maximum development.

The interglacial beds, which in many places separate the lower from the upper till, show that after the retreat of the earlier mer de glace the climate became progressively more temperate, until eventually the country was clothed with a flora essentially the same as the present. Wild oxen, the great Irish deer, and the horse, elephant, rhinoceros, and other mammals then lived in Britain. From the presence of such a flora and fauna we may reasonably infer that the climate during the climax of interglacial times was as genial as now. The occurrence of marine deposits associated with some of the interglacial peaty beds shows that eventually submergence ensued; and as the shells in some of the marine beds are boreal and arctic forms, they prove that cold climatic conditions accompanied the depression of the land. To what extent the land sank under water we cannot tell. It may have been 500 feet or not so much, for the evidence is somewhat unsatisfactory.