1st, Terrestrial and Aqueous Rocks.
2d, Igneous Rocks.
3d, Crystalline Schists.

By far the largest areas of land are composed of rocks belonging to the first class. These consist chiefly of the more or less indurated sediments of ancient rivers, lakes, and seas—namely, conglomerate, sandstone, shale, limestone, etc. And now and again, interstratified with such aqueous beds, we meet with rocks of terrestrial origin, such as lignite, coal, and the débris of former glacial action. Now, most of our aqueous rocks have been accumulated in the sea, and thus we arrive at the conclusion that the present continental areas have from time to time been largely submerged—that the sea has frequently covered what are now the dry lands of the globe. But one remarkable fact stands out, and it is this: Nowhere amongst the sedimentary rocks of the earth’s crust do we meet with any ancient sediments which can be likened to the red clay now slowly accumulating in the deeper abysses of the ocean. There are no rocks of abysmal origin. Many of our limestones have undoubtedly formed in deep, clear water, but none of these is abysmal. Portions of Europe may now and again have been submerged for several thousand feet, but no part of this or any other continent, so far as we yet know, has within geological time been depressed to depths comparable to those of the present oceanic basins. Nay, by far the larger portions of our marine formations have accumulated in comparatively shallow water—sandstones and shales (sand and mud) being by far the most common kinds of rock that we encounter. In short, aqueous strata have, as a rule, been deposited at no great depth and at no great distance from dry land; the rocks are built up mostly of terrigenous material; and even the purer limestones and chalks, which we may suppose accumulated in seas of moderate depth, not infrequently contain some terrestrial relic which has been drifted out to sea, and afford other evidence to show that the nearest land was never very far away. Followed along their outcrop such rocks sooner or later become mixed and interbedded with ordinary sedimentary matter. Thus, for example, the thick carboniferous limestone of Wales and the Midlands of England must have accumulated in the clear water of a moderately deep sea. But when this limestone is traced north into Northumberland it begins to receive intercalations of sandstone and shale, which become more and more important, until in Scotland they form by much the larger portion of the series—the enormous thick limestones of the south being represented by only a few inconsiderable beds, included, along with seams of ironstone and coal, in a thick succession of sandstones and shales.

Of the igneous rocks and the crystalline schists I need not speak at present, but I shall have something to say about them before I have done.

Having learned that no truly abysmal rocks enter into the composition of our continents, of what kind of rocks, we may ask, are the islands composed? Well, some of those islands are built up of precisely the same materials as we find in the continents. This is the case with most islands which are not separated from continental areas by profoundly deep seas. Thus our own islands with their numerous satellites are geologically one with the adjacent continent. Their present separation is a mere accident. Were the European area, with the adjacent sea-bed, to be elevated for a few hundred feet we should find that Britain and Ireland form geologically part and parcel of the continent. And the same is the case with Nova Zembla and Spitzbergen in the north, and with the Mediterranean islands in the south. There is another large class of islands, however, which are characterised by the total absence of any of those sedimentary rocks of which, as I have just said, our continents and continental islands are chiefly built up. The islands referred to are scattered over the bosom of the great ocean, and are surrounded by profoundly deep water. Some are apparently composed entirely of coral, others are of volcanic origin, and yet others are formed partly of volcanic rock and partly of coral. Thus we have two distinct kinds of island:—

1st, Islands which have at one time evidently been connected with adjacent continents, and which are therefore termed continental islands; and

2d, Oceanic islands, which rise, as it were, from profound depths in the sea, and which have never formed part of the continents.

The fauna and flora of the former class agree with those of the neighbouring continents, although some modifications are met with, especially when the insulation has been of long standing. When such has been the case the species of plants and animals may be almost entirely distinct. Nevertheless, such ancient continental islands agree with those which have been separated in more recent geological times in containing both indigenous amphibians and mammals. Oceanic islands, on the other hand, contain no indigenous mammals or amphibians, their life consisting chiefly of insects and birds, and usually some reptiles—just such a fauna as might have been introduced by the influence of winds and of oceanic currents carrying driftwood.

Such facts, as have now been briefly summarised, point clearly to the conclusion that the oceanic basins and continental areas are of primeval antiquity. All the geological facts go to prove that abysmal waters have never prevailed over the regions now occupied by dry land; nor is there any evidence to show that continental land-masses ever existed in what are now the deepest portions of the ocean. The islets dotted over the surface of the Pacific and the other great seas are not the relics of a vast submerged continent. They are either the tops of submarine volcanic mountains, or they are coral structures founded upon the shoulders of degraded volcanoes and mountain-chains, and built up to the surface by the indefatigable labours of the humble polyp. We come then to the general conclusion that oceanic basins and intervening continental ridges are great primeval wrinkles in the earth’s crust—that they are due to the sinking down of that crust upon the cooling and contracting nucleus. These vast wrinkles had come into existence long before the formation of our oldest geological strata. All our rocks may, in short, be looked upon as forming a mere superficial skin covering and concealing the crystalline materials which no doubt formed the original surface of the earth’s crust.

Having premised so much, let me now turn to consider the geological history of our own Continent, and endeavour to trace out the various stages in its evolution. Of course I can only do so in a very brief and general manner; it is impossible to go into details. We shall find, however, that the history of the evolution of Europe, even when sketched in outline, is one full of instruction for students of physical geography, and that it amply bears out the view of the permanency of the greater features of the earth’s surface.

The oldest rocks that we know of are the crystalline schists and gneiss, belonging to what is called the Archæan system. The origin of these rocks is still a matter of controversy—some holding them to be part of the primeval crust of the globe, or the chemical precipitates of a primeval ocean, others maintaining that they are altered or metamorphosed rocks of diverse origin, a large proportion having consisted originally of aqueous or sedimentary rocks, such as sandstone and shale; while not a few are supposed to have been originally eruptive igneous rocks. According to some geologists, therefore, the Archæan rocks represent the earliest sediments deposited over the continental ridges. It is supposed that here and there those ridges rose above the surface of what may have been a boiling or highly-heated ocean, from whose waters copious chemical precipitations took place, while gravel and shingle gathered around the shores of the primeval lands. According to other writers, however, the Archæan rocks were probably accumulated under normal conditions. They consist, it is contended, partly of sediment washed down from some ancient land-surface, and distributed over the floor of an old sea (just as sediments are being transported and deposited in our own day), and partly of ancient igneous rocks. Their present character is attributed to subsequent changes, superinduced by heat and pressure, at a time when the masses in question were deeply buried under later formations, which have since been washed away. In a word, we are still quite uncertain as to the true origin of the Archæan rocks. Not infrequently they show a bedded structure, and in that respect they simulate the appearance of strata of sedimentary origin. It is very doubtful, however, whether this “bedded structure” is any evidence of an original aqueous arrangement. We know now that an appearance of bedding has been induced in originally amorphous rocks during great earth-movements. Granite masses, for example, have been so crushed and squeezed as to assume a bedded aspect, and a similar structure has been developed in many other kinds of rock subjected to enormous pressure. Whatever may have been the origin of the bedded structure of the Archæan rocks, it is certain that the masses have been tilted up and convoluted in the most remarkable manner. Hitherto they have yielded no unequivocal trace of organic remains—the famous Eozoon being now generally considered as of purely mineral origin. The physical conditions under which the Archæan gneiss and schist came into existence are thus quite undetermined, but geologists are agreed that the earliest land-surfaces, of the former existence of which we can be quite certain, were composed of rocks. And this brings us to the beginning of reliable geological history.