Let us now look at the Arctic and Atlantic coast-lines of North America. From the extreme north down to the latitude of New York the shores are obviously those of a partially-submerged region. They are of the same type as the coasts of north-western Europe. We have every reason to believe also that the depression of Greenland and north-east America, from which these lands have only partially recovered, dates back to a comparatively recent period. The fiords and inlets, like those of Europe, are merely half-drowned land-valleys, and the continental shelf is crossed by deep hollows which are evidently only the seaward continuations of well-marked terrestrial features. Such, for example, is the case with the valleys of the Hudson and the St. Lawrence, the submerged portions of which can be followed out to the edge of the continental plateau, which is notched by them at depths of 474 and 622 fathoms respectively. There is, in short, a broad resemblance between the coasts of the entire Arctic and North Atlantic regions down to the latitudes already mentioned. Everywhere they are irregular and fringed with islands in less or greater abundance—highly-denuded and deeply-incised plateaux being penetrated by fiords, while low-lying and undulating lands that shelve gently seaward are invaded by shallow bays and inlets. Comparing the American with the opposite European coasts one cannot help being struck with certain other resemblances. Thus Hudson Bay at once suggests the Baltic, and the Gulf of Mexico, with the Caribbean Sea, recalls the Mediterranean. But the geological structure of the coast-lands of Greenland and North America betrays a much closer resemblance between these and the opposite shores of Europe than appears on a glance at the map. There is something more than a mere superficial similarity. In eastern North America and Greenland, just as in western Europe, no grand mountain uplifts have taken place for a prodigious time. The latest great upheavals, which were accompanied by much folding and flexing of strata, are those of the Appalachian chain and of the coastal ranges extending through New England, Nova Scotia, and Newfoundland, all of which are of Palæozoic age. Considerable crustal movements affected the American coast-lines in Mesozoic times, and during these uplifts the strata suffered fracture and displacement, but were subjected to comparatively little folding. Again, along the maritime borders of north-east America, as in the corresponding coast-lines of Europe, igneous action, more or less abundant in Palæozoic and early Mesozoic times, has since been quiescent. From the mouth of the Hudson to the Straits of Florida the coast-lines are composed of Tertiary and Quaternary deposits. This shows that the land has continued down to recent times to gain upon the sea—a result brought about partly by quiet crustal movements, but to a large extent by sedimentation, aided, on the coasts of Florida, by the action of reef-building corals.

Although volcanic action has long ceased on the American sea-board, we note that in Greenland, as in the west of Scotland and north of Ireland, there is abundant evidence of volcanic activity at so late a period as the Tertiary. It would appear that the great plateau-basalts of those regions, and of Iceland and the Faröe Islands, were contemporaneous, and were possibly connected with an important crustal movement. It has long been suggested that at a very early geological period Europe and North America may have been united. The great thickness attained by the Palæozoic rocks in the eastern areas of the latter implies the existence of a wide land-surface from which ancient sediments were derived. That old land must have extended beyond the existing coast-line, but how far we cannot tell. Similarly in north-west Europe, during early Palæozoic times, the land probably stretched further into the Atlantic than at present. But whether, as some think, an actual land-connection subsisted between the two continents it is impossible to say. Some such connection was formerly supposed necessary to account for life common to the Palæozoic strata of both continents, and which, as they were probably denizens of comparatively shallow water, could only have crossed from one area to another along a shore-line. It is obvious, indeed, that if the oceanic troughs in those early days were of an abysmal character, a belt of shallow water would be required to explain the geographical distribution of cosmopolitan marine life-forms. But if it be true that subsidence of the crust has been going on through all geological time, and that the land-areas have nothwithstanding continued to extend over the continental plateau, then it follows that the oceanic trough must be deeper now than it was in Palæozoic times. There are, moreover, certain geological facts which seem hardly explicable on the assumption that the seas of past ages attained abysmal depths over any extensive areas. The Palæozoic strata which enter so largely into the framework of our lands have much the same appearance all the world over, and were accumulated for the most part in comparatively shallow water. A petrographical description of the Palæozoic mechanical sediments of Europe would serve almost equally well for those of America, of Asia, or of Australia. Take in connection with this the fact that Palæozoic faunas had a very much wider range than those of Mesozoic and later ages, and were characterised above all by the presence of many cosmopolitan species, and we can hardly resist the conclusion that it was the comparative shallowness of the ancient seas that favoured that wide dispersal of species, and enabled currents to distribute sediments the same in kind over such vast regions. As the oceanic area deepened and contracted, and the land-surface increased, marine faunas were gradually restricted in their range, and the cosmopolitan marine forms diminished in numbers, while sediments, gathering in separate regions, became more and more differentiated. For these and other reasons which need not be entered upon here, I see no necessity for supposing that a Palæozoic Atlantis connected Europe with North America. The broad ridge upon which the Faröe Islands and Iceland are founded seems to pertain as truly to the oceanic depression as the long Dolphin Ridge of the South Atlantic. The trend of the continental plateau in high latitudes is shown, as I think, by the general direction of the coast-lines of north-western Europe and east Greenland, the continental shelf being submerged in those regions for a few hundred fathoms only. How the Icelandic ridge came into existence, and what its age may be, we can only conjecture. It may be a wrinkle as old as the oceanic trough which it traverses, or its origin may date back to a much more recent period. We may conceive it to be an area which has subsided more slowly than the floor of the ocean to the north and south; or, on the other hand, it may be a belt of positive elevation. Perhaps the latter is the more probable supposition, for it seems very unlikely that crustal disturbances, resulting in axial and regional uplifts, should have been confined to the continental plateau only. Be that as it may, there is little doubt that land-connection did obtain between Greenland and Europe in the Cainozoic times along this Icelandic ridge, for relics of the same Tertiary flora are found in Scotland, the Faröe Islands, Iceland, and Greenland. The deposits in which these plant-remains occur are associated with great sheets of volcanic rocks, which in the Faröe Islands and Iceland reach a thickness of many thousand feet. Of the same age are the massive basalts of Jan Mayen, Spitzbergen, Franz-Joseph Land, and Greenland. These lavas seem seldom to have issued from isolated foci in the manner of modern eruptions, but rather to have welled up along the lines of rectilineal fissures. From the analogy of similar phenomena in other parts of the world it might be inferred that the volcanic action of these northern regions may have been connected with a movement of elevation, and that the Icelandic ridge, if it did not come into existence during the Tertiary period, was at all events greatly upheaved at that time. It would seem most likely, in short, that the volcanic action in question was connected mainly with crustal movements in the oceanic trough. Similar phenomena, as is well known, are met with further south in the trough of the Atlantic. Thus the volcanic Azores rise like Iceland from the surface of a broad ridge which is separated from the continental plateau by wide and deep depressions. And so again, from the back of the great Dolphin Ridge, spring the volcanic islets of St. Paul’s, Ascension, and Tristan d’Acunha.

I have treated of the Icelandic bank at some length for the purpose of showing that its volcanic phenomena do not really form an exception to the rule that such eruptions ceased after Palæozoic or early Mesozoic times to disturb the Atlantic coast-lines of Europe and North America. As the bank in question extends between Greenland and the British Islands, it was only natural that both those regions should be affected by its movements. But its history pertains essentially to that of the Atlantic trough; and it seems to show us how transmeridional movements of the crust, accompanied by vast discharges of igneous rock, may come in time to form land-connections between what are now widely-separated areas.

Let us next turn our attention to the coast-lines of the Gulf of Mexico and the Caribbean Sea. These enclosed seas have frequently been compared to the Mediterranean, and the resemblance is self-evident. Indeed, it is so close that one may say the Mexican-Caribbean Sea and the Mediterranean are rather homologous than simply analogous. The latter, as we have seen, occupies a primitive depression, and formerly covered a much wider area. It extended at one time over much of southern Europe and northern Africa, and appears to have had full communication across Asia Minor with the Indian Ocean, and with the Arctic Ocean athwart the low-lying tracts of north-western Asia. Similarly, it would seem, the Mexican-Caribbean Sea is the remaining portion of an ancient inland-sea which formerly stretched north through the heart of North America to the Arctic Ocean. Like its European parallel, it has been diminished by sedimentation and crustal movements. It resembles the latter also in the greatness and irregularity of its depths, and in the evidence which its islands supply of volcanic action as well as of very considerable crustal movements within recent geological times. Along the whole northern borders of the Gulf of Mexico the coast-lands, like those on the Atlantic sea-board of the Southern States, are composed of Tertiary and recent accumulations, and the same is the case with Yucatan; while similar young formations are met with on the borders of the Caribbean Sea and in the Antilles. The Bahamas and the Windward Islands mark out for us the margin of the continental plateau, which here falls away abruptly to profound depths. One feels assured that this portion of the plateau has been ridged up to its present level at no distant geological date. But notwithstanding all the evidence of recent extensive crustal movements in this region, it is obvious that the Mexican-Caribbean depression, however much it may have been subsequently modified, is of primitive origin.[DP]

[DP] Professor Suess thinks it is probable that the Caribbean Sea and the Mediterranean are portions of one and the same primitive depression which traversed the Atlantic area in early Cretaceous times. He further suggests that it may have been through the gradual widening of the central Mediterranean that the Atlantic in later times came into existence.

Before we leave the coast-lands of North America, I would again point out their leading geological features. In a word, then, they are composed for the most part of Archæan and Palæozoic rocks; no great linear or axial uplifts marked by much flexure of strata have taken place in those regions since Palæozoic times; while igneous action virtually ceased about the close of the Palæozoic or the commencement of the Mesozoic period. It is not before we reach the shores of the Southern States and the coast-lands of the Mexican-Caribbean Sea that we encounter notable accumulations of Mesozoic, Tertiary, and younger age. These occur in approximately horizontal positions round the Gulf of Mexico; but in the Sierra Nevada of northern Colombia and the Cordilleras of Venezuela the Tertiary strata enter into the formation of true mountains of elevation. Thus the Mexican-Caribbean depression, like that of the Mediterranean, is characterised not only by its irregular depths and its volcanic phenomena, but by the propinquity of recent mountains of upheaval, which bear the same relation to the Caribbean Sea as the mountains of north Africa do to the Mediterranean.

We may now compare the Atlantic coasts of South America with those of Africa. The former coincide in general direction with the edge of the continental plateau, to which they closely approach between Cape St. Roque and Cape Frio. In the north-east, between Cape Paria, opposite Trinidad, and Cape St. Roque, the continental shelf attains a considerably greater breadth, while south of Cape Frio it gradually widens until, in the extreme south, it runs out towards the east in the form of a narrow ridge, upon the top of which rise the Falkland Islands and south Georgia. Excluding from consideration for the present all recent alluvial and Tertiary deposits, we may say that the coast-lands from Venezuela down to the south of Brazil are composed principally of Archæan rocks; the eastern borders of the continent further south being formed of Quaternary and Tertiary accumulations. So far as we know, igneous rocks are of rare occurrence on the Atlantic sea-board. Palæozoic strata approach the coast-lands at various points between the mouths of the Amazons and La Plata, and these, with the underlying and surrounding Archæan rocks, are more or less folded and disturbed, while the younger strata of Mesozoic and Cainozoic age (occupying wide regions in the basin of the Amazons, and here and there fringing the sea-coast) occur in approximately horizontal positions. It would appear, therefore, that no great axial uplifts have taken place in those regions since Palæozoic times. The crustal movements of later ages were regional rather than axial; the younger rocks are not flexed and mashed together, and their elevation (negative or positive) does not seem to have been accompanied by conspicuous volcanic action.

The varying width of the continental shelf is due to several causes. The Orinoco, the Amazons, and other rivers descending to the north-east coast, carry enormous quantities of sediment, much of which comes to rest on the submerged slopes of the continental plateau, so that the continental shelf tends to extend seawards. The same process takes place on the south-east coast, where the Rio de la Plata discharges its muddy waters. South of latitude 40° S., however, another cause has come into play. From the mouth of the Rio Negro to the terminal point of the continent the whole character of the coast betokens a geologically recent emergence, accompanied and followed by considerable marine erosion. So that in this region the continental shelf increases in width by the retreat of the coast-line, while in the north-east it gains by advancing seawards. It is to be noted, however, that even there, in places where the shores are formed of alluvia, the sea tends to encroach upon the land.

The Atlantic coast of Africa resembles that of South America in certain respects, but it also offers some important contrasts. As the northern coasts of Venezuela and Colombia must be considered in relation rather to the Caribbean depression than to the Atlantic, so the African sea-board between Cape Spartel and Cape Nun pertains structurally to the Mediterranean region. From the southern limits of Morocco to Cape Colony the coastal heights are composed chiefly of Archæan and Palæozoic rocks, the low shore-lands showing here and there strata of Mesozoic and Tertiary age together with still more recent deposits. The existing coast-lines everywhere advance close to the edge of the continental plateau, so that the submarine shelf is relatively narrower than that of eastern South America. The African coast is still further distinguished from that of South America by the presence of several groups of volcanic islands—Fernando Po and others in the Gulf of Guinea, and Cape Verde and Canary Islands. The last-named group, however, notwithstanding its geographical position, is probably related rather to the Mediterranean depression than to the Atlantic trough.