52. True igneous rocks occur either in beds or as irregular amorphous masses. When they occur as beds interstratified with aqueous strata, they are said to be contemporaneous, because they have evidently been erupted at the time the series of strata among which they appear was being amassed. When, on the other hand, they cut across the bedding, they are said to be subsequent or intrusive, because in this case they have been formed at a period subsequent to the strata among which they have been intruded. The bed upon which a contemporaneous igneous rock reclines, often affords marks of having been subjected to the action of heat; sandstones being hardened, and frequently much jointed and cracked, owing to the shrinking induced by the heat of the once molten rock above, and clay-rocks often assuming a baked appearance. There is generally, also, some discoloration both in the pavement of rock upon which the igneous mass lies, and in the under portions of the latter itself. The beds overlying a contemporaneous igneous rock, however, do not exhibit any marks of the action of heat; the old lava-stream having cooled before the sediment, now forming the overlying strata, was accumulated over its surface. One may often notice how the sand and mud have quietly settled down into the irregular hollows and crevices of the old lava, as in the following section, where i represents the igneous rock; a being the baked pavement of sandstone, &c.; and b the overlying sedimentary deposits. When the igneous rock itself is examined, its upper portions are often observed to be scoriaceous or cinder-like, and the under portions likewise frequently exhibit a similar appearance. It is generally most solid towards the centre of the bed. The vesicles, or pores, in the upper and lower portions are often flattened, and are frequently filled with mineral matter. Sometimes these cavities may have been filled at the time the rock was being erupted, but in most cases the mineral matter would appear to have been introduced subsequently by the action of water percolating through the rock. Occasionally we meet with igneous rocks which are more or less vesicular and amygdaloidal throughout their entire mass. Others, again, often shew no vesicular structure, but are homogeneous from top to bottom. The texture is also very variable, and this even in the same rock-mass; some portions being compact or fine-grained, and others coarsely crystalline. As a rule the rock is most crystalline towards the centre, and gets finer-grained as the top and bottom of the bed are approached. Not unfrequently, however, an igneous rock will preserve the same texture throughout. The jointing is also highly irregular as a rule. But in many cases, especially when the rock is fine-grained, the jointing is very regular. The basaltic columns of the Giants' Causeway and the Isle of Staffa are well-known examples of such regularly jointed masses. Igneous rocks frequently decompose into a loose earthy mass (wacké), and this is most markedly the case with those belonging to the basic group.
| Fig. 20.—Contemporaneous Igneous Rock. |
53. Contemporaneous igneous rocks are frequently associated with more or less regular beds of breccia, conglomerate, ash, tuff, &c. These are evidently the loose volcanic ejectamenta which accompanied former eruptions of lava, and have been arranged by the action of water. Beds of such materials, however, frequently occur without any accompanying lava-form rocks. Nor are they always arranged in bedded masses. They sometimes appear filling vertical pipes which seem to have been the funnels of old volcanoes. The following section exhibits the general appearance of one of these volcanic necks. They are very common in some parts of Scotland, as in Ayrshire, and are frequently ranged along the line of a fault in the strata. [Fig. 21] shews such a neck of ejectamenta, made up of fragments of various kinds of rock, such as sandstone, shale, limestone, coal, &c., sometimes without any admixture of igneous rocks. The strata through which the pipe has been pierced usually dip in towards the latter, and at their junction with the coarse agglomerate often shew marks of the action of heat, coal-seams having sometimes been 'burned' useless for a number of yards away from the 'neck.'
| Fig. 21.—Neck filled with Volcanic Agglomerate. |
54. Intrusive igneous rocks occur as sheets, dykes, and necks. The sheets frequently conform for long distances to the bedding of the strata among which they occur, and are thus liable to be mistaken for contemporaneous rocks. But when they are closely examined, it will be seen that they not only bake or alter the beds above and below them, but seldom keep precisely to one horizon or level—occasionally rising to a higher, or sinking to a lower position in the strata, as shewn in the following diagram-section. Dykes are wall-like masses of igneous strata which cut across the strata, generally at a high angle (see d, d, [fig. 22]). In the neighbourhood of a recent volcanic orifice, numerous dykes are seen ramifying in all directions. In the British Islands some dykes have been followed in a linear direction for very long distances. Sometimes these occupy the sites of large dislocations, at other times they have cut through the strata without displacing them. Occasionally they appear to have been the feeders of the great sheets of igneous rock which here and there occur in their vicinity. The phenomena presented by the necks of intrusive rock do not differ from those characteristic of agglomerate or tuff necks. The strata are bent down towards the central plug of igneous rock, and are generally more or less altered at the line of junction.
| Fig. 22.—Intrusive Sheet and Dykes: i, igneous intrusive sheet; d, d, dykes; s, s, sedimentary strata. |