59. The geological action of water in modifying the crust of the earth is twofold—namely, chemical and mechanical.

Underground Water.—All the moisture which we see falling as rain or snow does not flow immediately away by brooks and rivers to the sea. Some portion of it soaks into the ground, and finds a passage for itself by cracks and fissures in the rocks below, from which it emerges at last as springs, either at the surface of the earth, or at the bottom of the sea. Such are the more obvious courses pursued by the water—it flows off either by sub-aërial or subterranean channels. But a not inconsiderable portion soaks into the solid rocks themselves, which are all more or less porous and pervious. Water thus slowly soaking often effects very considerable chemical changes. Sometimes the binding matter which held the separate particles of the rock together is dissolved out, and the rock is thus rendered soft and crumbling; at other times, the reverse takes place, and the water deposits, in the minute interstitial pores, some binding matter by which the partially or wholly incoherent grains are agglutinated into a solid mass. Thus what were originally hard and tough rocks become disintegrated to such a degree, that they crumble to powder soon after they are exposed to the air; while some again are converted into a clay, and may be dug readily with a spade. And, on the other hand, loose sand is glued into a hard building-stone. There are many other changes effected upon rocks by water, in virtue of the chemical agents which it holds in solution. Indeed, it may be said that there are very few, if any, rocks in which the chemical action of interstitial water has not formerly been, or is not at present being, carried on. Besides that which soaks through the rocks themselves, there is always a large proportion of underground water, which, as we have said above, finds a circuitous route for itself by joints, cracks, and crevices. After coursing for, it may be, miles underground, such water eventually emerges as springs, which contain in solution the various ingredients which the water has chemically extracted from the rocks. These ingredients are then deposited in proportion as the mineral water suffers from evaporation. Water impregnated with carbonate of lime, for example, deposits that compound as soon as evaporation has carried off a certain percentage of the water itself, and the carbonic acid gas which it held. This is the origin of the mineral called travertine or calcareous tufa, which is so commonly met with on the margins of springs, rivers, and waterfalls.

60. Stalactites and stalagmites have been formed in a similar way. Water slowly oozing from the roof of a limestone cavern partially evaporates there, and a thin pellicle of carbonate of lime is formed; while that portion of the water which falls to the ground, and is there evaporated, likewise gives rise to the formation of carbonate of lime. By such constant dropping and evaporating, long tongue-and icicle-like pendants (stalactites) grow downwards from the roof; while at the same time domes and bosses (stalagmites) grow upwards from the floor, so as sometimes to meet the former and give rise to continuous pillars and columns. The great solvent power of carbonated water is shewn first by the chemical analysis of springs, and, secondly, by the great wasting effects which the long-continued action of these has brought about. Thus, it has been estimated that the fifty springs near Carlsbad, which yield eight hundred thousand cubic feet of water in twenty-four hours, contain in solution as much lime as would go to form a mass of stone weighing two hundred thousand pounds. Warm, or, as they are termed, thermal springs, frequently carry away with them, out of the bowels of the earth, vast quantities of mineral matter in solution. The waters at Bath, for instance, are estimated to bring to the surface an annual amount of various salts, the mass of which is not less than 554 cubic yards. One of the springs of Louèche, France, however, carries out with it no less than 8,822,400 pounds of gypsum annually, which is equal to about 2122 cubic yards.

61. It is easy to conceive, therefore, that in the course of ages great alterations must be caused by springs. Caves and winding galleries, and irregular channels, will be worn out of the rocks which are thus being dissolved. Especially will this be the case in countries where calcareous rocks abound. It is in such regions, accordingly, where we meet with the most striking examples of caves and underground river-channels. The largest cave at present known is the Mammoth Cave, in Kentucky. This remarkable hollow consists of numerous winding galleries and passages that cross and recross, and the united length of which is said to be 217 miles. In calcareous countries, rivers, after flowing for, it may be, miles at the surface, suddenly disappear into the ground, and flow often for long distances before they reappear in the light of day. In some regions, indeed, nearly all the drainage is subterranean. The surface of the ground, in calcareous countries, frequently shews circular depressions, caused by the falling in of the roofs of caverns. Sometimes, also, great masses of rock, often miles in extent, get loosened by the dissolving action of subterranean water, and crash downwards into the valleys. Such landslips, as they are called, are not, however, confined to calcareous regions. In 1806, a large section of the Rossberg, a mountain lying to the north of the Righi, consisting of conglomerate overlying beds of clay, rushed down into the plains of Goldau, overwhelming four villages and nearly a thousand inhabitants. The cause of this catastrophe was undoubtedly the softening into mud of the clay-beds on which the conglomerate rested, for the season which had just terminated when the slip took place had been very wet. The mass of material that slid down was estimated to contain upwards of fifty-four millions of cubic yards; it reached not less than two and a half miles in length, by some three hundred and fifty yards wide, and thirty-five yards thick.

62. Surface-water—Rain.—Having now learned something as to the modifications produced by underground water, we turn next to consider the action of surface-water, and the results arising from that action. Rain, when it falls to the ground, carries with it some carbonic acid gas which it has absorbed from the atmosphere. Armed with this solvent, it attacks certain rocks, more especially limestones and chalk, a certain proportion of which it licks up and delivers over to brooks and streams. Under its influence, also, the finer particles of the soil are ever slowly making their way from higher to lower levels. Rocks which are being gradually disintegrated by weathering have their finer grains and particles, thus loosened, carried away by rain. Nor is this rain-action so inconsiderable as might be supposed. In the gentler hollows of an undulating country, we frequently find accumulations of clay, loam, and brick-earth, which often reach many feet in thickness, and which are undoubtedly the results of rain washing down the particles of soil, &c. from the adjacent slopes.

63. River-action.—The water of streams and rivers almost invariably contains in solution one or more chemical compounds, and in this respect does not differ from the water of springs. Of course, this mineral matter is derived in considerable measure from springs, but is also no doubt to a large extent taken up by the rivers themselves, as they wash the rocks and soils on their journey to the sea. The amount of mineral matter thus transported must be something enormous, as is shewn by the chemical analyses of river-water. Bischof calculated that the Rhine carries in solution as much carbonate of lime as would suffice for the yearly formation of three hundred and thirty-two thousand millions of oyster-shells of the usual size—a quantity equal to a cube five hundred and sixty feet in the side, or a square bed a foot thick, and upwards of two miles in the side. But the mechanical erosion effected by running water is what impresses us most with the importance of rivers as geological agencies. This erosive action is due to the gravel, sand, and mud carried along by the water. These ingredients act as files in the hand of a workman, and grind, polish, and reduce the rocks against which they are borne. The beds of some streams that flow over solid rock are often pitted with circular holes, at the bottom of which one invariably finds a few rounded stones. These stones, kept in constant motion by the water, are the means by which the pot-holes, as they are called, have been excavated. When pot-holes are numerous, they often unite so as to form curious smooth-sided trenches and gullies. The same filing action goes on all over the bed of the stream wherever the solid rock is exposed. And while the latter is being gradually reduced, the stones and grit which act as the files are themselves worn and reduced; so that stones diminish in size, and grit passes into fine sand and mud, as they move from higher to lower levels. No doubt the erosive action of running water appears to have but small effect in a short time, and we are apt, therefore, to underestimate its power. But when our observations extend, we see it is quite otherwise, and that, so far from being unimportant, running water is really one of the most powerful of all the geological agencies that are employed in modifying the earth's crust. Even within a comparatively short time, it is able to effect very considerable changes. Thus, the river Simeto, in Sicily, having become dammed by a stream of lava flowing from Etna, succeeded, in two hundred and fifty years, in cutting through hard solid basalt a new channel for itself, which measured from twenty to fifty mètres in depth, and from twelve to eighteen in breadth. When, also, we remember the fact, that no river is absolutely free from mineral matter held in suspension, but that, on the contrary, all running water is more or less discoloured with sediment, which is merely the material derived from the disintegration of rocks, it will appear to us difficult to overestimate the power of watery erosion. To the mineral matter held in suspension, we have to add the coarser detritus, gravel and sand, which is being gradually pushed along the beds of rivers, and which, in the case of the Mississippi, has been estimated to equal a mass of seven hundred and fifty million cubic feet, discharged annually into the Gulf of Mexico. By careful measurements, it has also been ascertained that the same river carries down annually into the sea a weight of mud held in suspension which reaches the vast sum of 812,500,000,000 pounds. The total annual amount of mineral matter, whether held in suspension or pushed along the bottom of this great river, has been estimated to equal a mass 268 feet in height, with an area of one square mile.

64. Alluvium.—The sediment carried along and deposited by a river is called alluvium. Sometimes this alluvium covers wide areas, forming broad flats on one or both sides of a river, and in such cases it is due to the action of the floodwaters of the stream. Every time the river overflows the low grounds through which it passes, a layer of sediment is laid down, which has the effect of gradually raising the level of the alluvial tract. By and by a time comes when the river, which has all the while been slowly deepening its channel, is unable to flood the flats, and thereupon it begins to cut into these, and to form new flats at a somewhat lower level. In this way we often observe a series of alluvial terraces, consisting of gravel, sand, and silt, rising one above another along a river valley. Such are the terraces of the Thames and other rivers in England, and of the Tweed, Clyde, Tay, &c. in Scotland. The great plains through which the Rhine flows between Basel and Bingen, are also well-marked examples of alluvial accumulations. There are very few streams, indeed, which have not formed such deposits along some portion of their course.