But don't conclude that you can do the same amount of work each day in the week on the same amount of fuel, even should it be of the same kind. You will that with all your care and skill, your engine will differ very materially both as to the amount of fuel and water that it will require, though the conditions may apparently be the same.
This may be as good a time as any to say to you, remember that a blast of cold air against the tubes is a bad thing, so be careful about your firedoor; open it as little as, possible; when you want to throw in fuel, don't open the door, and then go a rod away after a shovel of coal; and I will say here that I have seen this thing done by men who flattered themselves that they were about at the top in the matter of running an engine. That kind of treatment will ruin the best boiler in existence. I don't mean that once or twice will do it, but to keep it up will do it. Get your shovel of coal and when you are ready to throw it in, open the door quickly and close it at once. Make it one of your habits to do this, and you will never think of doing it in any other way. If it becomes necessary to stop your engine with a hot fire and a high pressure of steam, don't throw your door open, but drop your damper and open the smoke box door.
If, however, you only expect to stop a minute or two, drop your damper, and start your injector if you have one. If you have none, get one.
An independent boiler feeder is a very nice thing, if constructed on the proper principles. You can't have your boiler too well equipped in this particular.
PART FOUR. _______
A boiler should be kept clean, outside and inside. Outside for your own credit, and inside for the credit of the manufacturers. A dirty boiler requires hard firing, takes lots of fuel, and is unsatisfactory in every way.
The best way to keep it clean is not to let it get dirty. The place to begin work, is with your "water boy," pursuade him to be very careful of the water he brings you, if you can't succeed in this, ask him to resign.
I have seen a water-hauler back into a stream, and then dip the water from the lowerside of tank, the muddy water always goes down stream and the wheels stir up the mud; and your bright water hauler dips it into the tank. While if he had dipped it from the upper side he would have gotten clear water. However, the days of dipping water are past, but a water boy that will do as I have stated is just as liable to throw his hose into the muddy water or lower side of tank as on the upper side, where it is clear. See that he keeps his tank clean. We have seen tanks with one-half inch of mud in the bottom. We know that there are times when you are compelled to use muddy water, but as soon as it is possible to get clear water make him wash out his tank, and don't let him haul it around till the boiler gets it all.
Allow me just here to tell you how to construct a good tank for a traction engine. You can make the dimensions to suit yourself, but across the front end and about two feet back fit a partition or second head; in the center of this head and about an inch from the bottom bore a two inch hole. Place a screen over this hole on the side next the rear, and on the other side, or side next front end, put a valve. You can construct the valve in this way: Take a piece of thick leather, about four inches long, and two and a half inches wide; fit a block of wood (a large bung answers the purpose nicely) on one end, trimming the leather around one side of the wood, then nail the long part of the valve just above the hole, so that the valve will fit nicely over the hole in partition. When properly constructed, this valve will allow the water to flow into the front end of tank, but will prevent its running back. So, when you are on the road with part of a tank of water, and start down hill, this front part fills full of water, and when you start up hill, it can not get back, and your pumps will work as well as if you had a full tank of water, without this arrangement you cannot get your pumps to work well in going up a steep hill with anything less than a full tank. Now, this may be considered a little out of the engineer's duty, but it will save lots of annoyance if he has his tank supplied with this little appliance, which is simple but does the business.
A boiler should be washed out and not blown out, I believe I am safe in saying that more than half the engineers of threshing engines today depend on the "blowing out" process to clean their boilers. I don't intend to tell you to do anything without giving my reasons. We will take a hot boiler, for instance; say, 50 pounds steam. We will, of course, take out the fire. It is not supposed that anyone will attempt to blow out the water with any fire in the firebox. We will, after removing the fire, open the blow-off valve, which will be found at the bottom or lowest water point. The water is forced out very rapidly with this pressure, and the last thing that comes out is the steam. This steam keeps the entire boiler hot till everything is blown out, and the result is that all the dirt, sediment and lime is baked solid on the tubes and side of firebox. But you say you know enough to not blow off at 50 pounds pressure. Well, we will say 5 pounds, then. You will admit that the boiler is not cold by any means, even at only 5 pounds, and if you know enough not to blow off at 50 pounds, you certainly know that at 5 pounds pressure the damage is not entirely avoided. As long as the iron is hot, the dirt will dry out quickly, and by the time the boiler is cold enough to force cold water through it safely, the mud is dry and adheres closely to the iron. Some of the foreign matter will be blown out, but you will find it a difficult matter to wash out what sticks to the hot iron.