Just at the junction of the last two centuries, Father Piazzi enriched the realm of science by one of the most important of modern discoveries in astronomy. On the night of 31 December, 1800--1 January, 1801, he discovered the little planet Ceres. This was the first of the asteroids, so many more of which were to be revealed to astronomical study during the next half-century. Father Piazzi's discovery was made, not by accident, but as the result of detailed astronomical work of the most painstaking character. He [{171}] had set out to make a map of the heavens, and to determine and locate the absolute position of all the visible stars. He had succeeded in cataloguing over 7,000 stars when his attention was called to one, hitherto supposed to be fixed, which he found had moved, during the interval between two observations, from its original position. He made still other observations, and thus determined the fact that it was a planetoid and not a fixed star with which he had to deal. Needless to say, his discovery proved a strong incentive to patient astronomical study of the same kind; and it is to these, rather than to great single discoveries, that we owe whatever progress in astronomy was made during the nineteenth century.

Contemporary with both of these last-mentioned men, and worthy to share in the scientific honors that were theirs, was the Abbé Haüy, who toward the end of the second half of the eighteenth century founded the science of crystallography; made a series of observations the value of which can never be disputed, originated theories some of which have served down to our own time as the basis of crystal knowledge, and attracted the attention of many students to the new science because of his charming personal character and his winning teaching methods. His life is a typical example of the value of work done in patient obscurity, founded on observation, and not on brilliant theories; and what he accomplished stamps him as one of the great [{172}] scientific geniuses of all time--one of the men who widened the bounds of knowledge in directions hitherto considered inaccessible to the ordinary methods of human investigation.

It is a commonplace of the lecturer on popular science at the present day, that the impulse to the development of our modern scientific discoveries which became so marked toward the end of the eighteenth century, was due in a noteworthy degree to the work of the French Encyclopedists. Their bringing together of all the details of knowledge in a form in which it could be readily consulted, and in which previous progress and the special lines of advance could be realized, might be expected to prove a fruitful source of suggestive investigation. As a matter of fact, however, a detailed knowledge of the past in science often seems to be rather a hindrance than a help to original genius, always prone to take its own way if not too much disturbed by the conventional knowledge already gained. Most of the great discoverers in science were comparatively young men when they began their careers as original investigators; and it was apparently their freedom from the incubus of too copious information that left their minds untrammelled to follow their own bent in seeking for causes where others had failed to find any hints of possible developments.

This was certainly the case with regard to many of those distinguished founders who lived in centuries prior to the nineteenth. Most of [{173}] them were men under thirty years of age, and not one of them had been noted, before he began his own researches, for the extent of his knowledge in the particular department of science in which his work was to prove so fruitful. Their lives illustrate the essential difference there is between theory and observation in science. The theorizer reaches conclusions that are popular as a rule in his own generation, and receives the honor due to a progressive scientist; the observer usually has his announcements of what he has actually seen scouted by those who are engaged in the same studies, and it is only succeeding generations who appreciate how much he really accomplished.

This was especially exemplified in the case of the Abbé Haüy, whose work in crystallography was to mean so much. What he learned was not from books, but from contact with the actual objects of his department of science; and it is because the example of a life like this can scarcely fail to serve a good purpose for the twentieth-century student, in impressing the lesson of the value of observation as opposed to theory, that its details are retold.

Réné Just Haüy was born 28 February, 1743, in the little village of Saint-Just, in the Department of Oise, somewhat north of the center of France. Like many another great genius, he was the son of very poor parents. His father was a struggling linen-weaver, who was able to support himself only with difficulty. At first [{174}] there seemed to be no other prospect for his eldest son than to succeed to his father's business. Certainly there seemed to be no possibility that he should be able to gain his livelihood by any other means than by the work of his hands.

Fortunately, however, there was in Haüy's native town a Premonstratensian monastery, and it was not long before some of the monks began to notice that the son of the weaver was of an especially pious disposition and attended church ceremonies very faithfully. The chance was given to him to attend the monastery school, and he succeeded admirably in his studies. As a consequence, the prior had his attention directed to the boy, and found in him the signs of a superior intelligence. He summoned the lad's parents and discussed with them the possibility of obtaining for their son an education. There were many difficulties in the way, but the principal one was their absolute financial inability to help him. If the son was to obtain an education, it must be somehow through his own efforts, and without any expense to his parents.

The prior thereupon obtained for young Haüy a position as a member of a church choir in Paris; and, later, some of those to whom he had recommended the boy secured for him a place in the college of Navarre. Here, during the course of a few years, he made such an impression upon the members of the faculty that they asked him to become one of the teaching corps of the institution. It was a very modest position that he [{175}] held, and his salary scarcely more than paid for his board and clothes and a few books. Haüy was well satisfied, however, because his position provided him with opportunities for pursuing the studies for which he cared most. At this time he was interested mainly in literature, and succeeded in learning several languages, which were to be of considerable use to him later on in his scientific career.

After some years spent in the college of Navarre he was ordained priest, and not long afterward became a member of the faculty of the college of Cardinal Lemoine. Here his position was somewhat better, and he was brought in contact with many of the prominent scholars of Paris. He seems, however, to have been quite contented in his rather narrow circle of interests, and was not specially anxious to advance himself. It is rather curious to realize that a man who was later to spend all his time in the pursuit of the physical sciences, knew practically nothing at all about them, and certainly had no special interest in any particular branch of science, until he reached the age of almost thirty years.

Even then his first introduction to serious science did not come because of any special interest that had been aroused in his own mind, but entirely because of his friendship for a distinguished old fellow-professor, whose walks he used to share, and who was deeply interested in botany. This was the Abbé Lhomond, a very [{176}] well-known scholar, to whom we owe a number of classic text-books arranged especially for young folk.