We placed the above two species with five or six others, including the garden, the domestic and the labyrinthic spiders, in empty wine-glasses, set in tea-saucers filled with water to prevent their escape. When they discovered, by repeated descents from the brims of the glasses, that they were thus surrounded by a wet ditch, they all set themselves to the task of throwing their silken bridges across. For this purpose they first endeavoured to ascertain in what direction the wind blew, or rather (as the experiment was made in our study) which way any current of air set,—by elevating their arms as we have seen sailors do in a dead calm. But, as it may prove more interesting to keep to one individual, we shall first watch the proceedings of the gossamer spider.
Finding no current of air on any quarter of the brim of the glass, it seemed to give up all hopes of constructing its bridge of escape, and placed itself in the attitude of repose; but no sooner did we produce a stream of air, by blowing gently towards its position, than, fixing a thread to the glass, and laying hold of it with one of its feet, by way of security, it placed its body in a vertical position, with its spinnerets extended outwards; and immediately we had the pleasure of seeing a thread streaming out from them several feet in length, on which the little aëronaut sprung up into the air. We were convinced, from what we thus observed, that it was the double or bend of the thread which was blown into the air; and we assigned as a reason for her previously attaching and drawing out a thread from the glass, the wish to give the wind a point d’appui—something upon which it might have a purchase, as a mechanic would say of a lever. The bend of the thread, then, on this view of the matter, would be carried out by the wind,—would form the point of impulsion,—and, of course, the escape bridge would be an ordinary line doubled.
Such was our conclusion, which was strongly corroborated by what we subsequently found said by M. Latreille—than whom no higher authority could be given. “When the animal,” says he, “desires to cross a brook, she fixes to a tree or some other object one of the ends of her first threads, in order that the wind or a current of air may carry the other end beyond the obstacle;”[FH] and as one end is always attached to the spinnerets, he must mean that the double of the thread flies off. In his previous publications, however, Latreille had contented himself with copying the statement of Dr. Lister.
In order to ascertain the fact, and put an end to all doubts, we watched, with great care and minuteness, the proceedings of the long-bodied spider above mentioned, by producing a stream of air in the same manner, as it perambulated the brim of the glass. It immediately, as the other had done, attached a thread, and raised its body perpendicularly, like a tumbler, standing on his hands with his head downwards; but we looked in vain for this thread bending, as we had at first supposed, and going off double. Instead of this it remained tight, while another thread, or what appeared to be so, streamed off from the spinners, similar to smoke issuing through a pin-hole, sometimes in a line, and sometimes at a considerable angle, with the first, according to the current of the air,—the first thread, extended from the glass to the spinnerets, remaining all the while tight drawn in a right line. It further appeared to us, that the first thread proceeded from the pair of spinnerets nearest the head, while the floating thread came from the outer pair,—though it is possible in such minute objects we may have been deceived. That the first was continuous with the second, without any perceptible joining, we ascertained in numerous instances, by catching the floating line and pulling it tight, in which case the spider glides along without attaching another line to the glass; but if she has to coil up the floating line to tighten it, as usually happens, she gathers it into a packet and glues the two ends tight together. Her body, while the floating line streamed out, remained quite motionless, but we distinctly saw the spinnerets not only projected, as is always done when a spider spins, but moved in the same way as an infant moves its lips when sucking. We cannot doubt, therefore, that this motion is intended to emit (if eject or project be deemed too strong words) the liquid material of the thread; at the same time, we are quite certain that it cannot throw out a single inch of thread without the aid of a current of air. A long-bodied spider will thus throw out in succession as many threads as we please, by simply blowing towards it; but not one where there is no current, as under a bell-glass, where it may be kept till it die, without being able to construct a bridge over water of an inch long. We never observed more than one floating thread produced at the same time; though other observers mention several.
The probable commencement, we think, of the floating line, is by the emission of little globules of the glutinous material to the points of the spinnerules—perhaps it may be dropped from them, if not ejected, and the globules being carried off by the current of air, drawn out into a thread. But we give this as only a conjecture, for we could not bring a glass of sufficient power to bear upon the spinnerules at the commencement of the floating line.
In subsequent experiments we found that it was not indispensable for the spider to rest upon a solid body when producing a line, as she can do so while she is suspended in the air by another line. When the current of air also is strong, she will sometimes commit herself to it by swinging from the end of the line. We have even remarked this when there was scarcely a breath of air.
We tried another experiment. We pressed pretty firmly upon the base of the spinnerets, so as not to injure the spider, blowing obliquely over them; but no floating line appeared. We then touched them with a pencil and drew out several lines an inch or two in length, upon which we blew in order to extend them; but in this also we were unsuccessful, as they did not lengthen more than a quarter of an inch. We next traced out the reservoirs of a garden-spider (Epeira diadema), and immediately taking a drop of the matter from one of them on the point of a fine needle, we directed upon it a strong current of air, and succeeded in blowing out a thick yellow line, as we might have done with gum-water, of about an inch and a half long.
When we observed our long-bodied spider eager to throw a line by raising up its body, we brought within three inches of its spinnerets an excited stick of sealing-wax, of which it took no notice, nor did any thread extend to it, not even when brought almost to touch the spinnerets. We had the same want of success with an excited glass rod; and indeed we had not anticipated any other result, as we have never observed that these either attract or repel the floating threads, as Mr. Murray has seen them do; nor have we ever seen the end of a floating thread separated into its component threadlets and diverging like a brush, as he and Mr. Bowman describe. It may be proper to mention that Mr. Murray, in conformity with his theory, explains the shooting of lines in a current of air by the electric state produced by motion in consequence of the mutual friction of the gaseous particles. But this view of the matter does not seem to affect our statements.
Nests, Webs, and Nets of Spiders.