Fig. 17. Showing changing angle of body.

THE SUGGESTED TYPE.—In Fig. 18 the suggested type is shown with the body normally in a horizontal position, and the planes in a neutral position, as represented in position 1. When sufficient speed had been attained both planes are turned to the same angle, as in position 2, and flight is initiated without the abnormal oscillating motion of the body.

But now let us see what takes place the moment the present type is launched. If, by any error on the part of the aviator, he should fail to readjust the tail to a neutral or to a proper angle of incidence, after leaving the ground, the machine would try to perform an over-head loop.

The suggested plan does not require this caution. The machine may rise too rapidly, or its planes may be at too great an angle for the power or the speed, or the planes may be at too small an angle, but in either case, neglect would not turn the machine to a dangerous position.

These suggestions are offered to the novice, because they go to the very foundation of a correct understanding of the principles involved in the building and in the manipulation of flying machines and while they are counter to the beliefs of aviators, as is shown by the persistency in adhering to the old methods, are believed to be mechanically correct, and worthy of consideration.

THE LOW CENTER OF GRAVITY.—But we have still to examine another feature which shows the wrong principle in the fixed planes. The question is often asked, why do the builders of aeroplanes place most of the weight up close to the planes? It must be obvious to the novice that the lower the weight the less liability of overturning.

FORE AND AFT OSCILLATIONS.—The answer is, that when the weight is placed below the planes it acts like a pendulum. When the machine is traveling forward, and the propeller ceases its motion, as it usually does instantaneously, the weight, being below, and having a certain momentum, continues to move on, and the plane surface meeting the resistance just the same, and having no means to push it forward, a greater angle of resistance is formed.

In Fig. 19 this action of the two forces is illustrated. The plane at the speed of 30 miles is at an angle of 15 degrees, the body B of the machine being horizontal, and the weight C suspended directly below the supporting surfaces.

The moment the power ceases the weight continues moving forwardly, and it swings the forward end of the frame upwardly, Fig. 20, and we now have, as in the second figure, a new angle of incidence, which is 30 degrees, instead of 12. It will be understood that in order to effect a change in the position of the machine, the forward end ascends, as shown by the dotted line A.

Fig. 20. Action when Propeller ceases to pull.