In examining the successive stream lines it will be found that while the 1st, 2d and 3d lines have a little less angle of impact than the corresponding lines in the straight plane, the last lines, 5, 6 and 7, have much greater angles, so that only line 4 strikes the plane at the same angle.

Such a plane structure would, therefore, have its center of pressure somewhere between the lines 3 and 4, and the lift being thus, practically, uniform over the surface, would be more effective.

THE CENTER OF PRESSURE.—This is a term used to indicate the place on the plane where the air acts with the greatest force. It has reference to a point between the front and rear margins only of the plane.

Fig. 24. Air lines below a concaved Plane.

UTILIZING THE RAREFIED AREA.—This structure, however, has another important advantage, as it utilizes the rarefied area which is produced, and which may be understood by reference to Fig. 25.

The plane B, with its upward curve, and at the same angle as the straight plane, has its lower end so curved, with relation to the forward movement, that the air, in rushing past the upper end, cannot follow the curve rapidly enough to maintain the same density along C, hence this exerts

an upward pull, due to the rarefied area, which serves as a lifting force, as well as the compressed mass beneath the plane.

CHANGING CENTER OF PRESSURE.—The center of pressure is not constant. It changes with the angle of the plane, but the range is considerably less on a concave surface than on a flat plane.

Fig. 25. Air lines above a convex Plane.

In a plane disposed at a small angle, A, as in Fig. 26, the center of pressure is nearer the forward end of the plane than with a greater positive angle of incidence, as in Fig. 27, and when the plane is in a normal flying angle, it is at the center, or at a point midway between the margins.