POWER THE GREAT ELEMENT.—Now, let us examine the question of this power which is able to set gravity at naught. The quality called energy resides in material itself. It is something within matter, and does not come from without. The power derived from the explosion of a charge of powder comes from within the substance; and so with falling water, or the expansive force of steam.

GRAVITY AS POWER.—Indeed, the very act of the ball gradually moving toward the earth, by the force of gravity, is an illustration of a power within the object itself. Long after Galileo firmly established the law of falling bodies it began to dawn on scientists that weight is force. After Newton established the law of gravitation the old idea, that power was a property of each body, passed away.

In its stead we now have the firmly established view, that power is something which must have at least two parts, or consist in pairs, or two elements acting together. Thus, a stone poised on a cliff, while it exerts no power which can be utilized, has, nevertheless, what is called potential energy. When it is pushed from its lodging place kinetic energy is developed. In both cases, gravity, acting in conjunction with the mass of the stone, produced power.

So in the case of gunpowder. It is the unity of two or more substances, that causes the expansion called power. The heat of the fuel converting water into steam, is another illustration of the unity of two or more elements, which are necessary to produce energy.

MASS AN ELEMENT IN FLYING.—The boy who reads this will smile, as he tells us that the power which propelled the ball through the air came from the thrower and not from the ball itself. Let us examine this claim, which came from a real boy, and is another illustration how acute his mind is on subjects of this character.

We have two balls the same diameter, one of iron weighing a half pound, and the other of cotton weighing a half ounce. The weight of one is, therefore, sixteen times greater than the other.

Suppose these two balls are thrown with the expenditure of the same power. What will be the result! The iron ball will go much farther, or, if projected against a wall will strike a harder blow than the cotton ball.

MOMENTUM A FACTOR.—Each had transferred to it a motion. The initial speed was the same, and the power set up equal in the two. Why this difference, The answer is, that it is in the material itself. It was the mass or density which accounted for the difference. It was mass multiplied by speed which gave it the power, called, in this case, momentum.

The iron ball weighing eight ounces, multiplied by the assumed speed of 50 feet per second, equals 400 units of work. The cotton ball, weighing 1/2 ounce, with the same initial speed, represents 25 units of work. The term "unit of work" means a measurement, or a factor which may be used to measure force.

It will thus be seen that it was not the thrower which gave the power, but the article itself. A feather ball thrown under the same conditions, would produce a half unit of work, and the iron ball, therefore, produced 800 times more energy.