The result would be that the small connection[p. 167] B would heat up, and, finally, be fused. While the large part of the wire would carry 500 amperes, the small wire could not possibly carry more than, say, 10 amperes. Now these little wires are the filaments in an electric bulb, and originally the attempt was made to have them so connected up that they could be illuminated by a single wire, as with the arc system above explained, one following the other as shown in Fig. [117].

It was discovered, however, that the addition of each successive lamp, so wired, would not give light in proportion to the addition, but at only about one-fourth the illumination, and such a course would, therefore, make electric lighting enormously expensive.

This knowledge resulted in an entirely new system of wiring up the lamps in a circuit. This is explained in Fig. [119]. In this figure A represents the dynamo, B, B the brushes, C, D the two line[p. 168] wires, E the lamps, and F the short-circuiting wires between the two main conductors C, D.

It will be observed that the wires C, D are larger than the cross wires F. The object is to show that the main wires might carry a very heavy amperage, while the small cross wires F require only a few amperes.

This is called the multiple circuit, and it is obvious that the entire amperage produced by the dynamo will not be required to pass through each lamp, but, on the other hand, each lamp takes only enough necessary to render the filament incandescent.

This invention at once solved the problem of the incandescent system and was called the subdivision of the electric light. By this means the cost was materially reduced, and the wiring up and installation of lights materially simplified.

But the divisibility of the light did not, by any means, solve the great problem that has occupied the attention of electricians and experimenters ever since. The great question was and is to preserve the little filament which is heated to incandescence, and from which we get the light.

The effort of the current to pass through the small filament meets with such a great resistance that the substance is heated up. If it is made of[p. 169] metal there is a point at which it will fuse, and thus the lamp is destroyed.